2024

  1. Bounding causal effects with leaky instruments David S. Watson, Jordan Penn, Lee M. Gunderson, Gecia Bravo-Hermsdorff, Afsaneh Mastouri, and Ricardo Silva In Fortieth Conference on Uncertainty in Artificial Intelligence (UAI), 2024 [Abstract] [URL] [PDF] [Code]

2023

  1. Intervention Generalization: A View from Factor Graph Models Gecia Bravo-Hermsdorff, David S. Watson, Jialin Yu, Jakob Zeitler, and Ricardo Silva In Neural Information Processing Systems 37 (NeurIPS), 2023 [Abstract] [URL] [PDF] [Poster] [Code] [Video]
  2. The Graph Pencil Method: Mapping Subgraph Densities to Stochastic Block Models Lee M. Gunderson, Gecia Bravo-Hermsdorff, Peter Orbanz In Neural Information Processing Systems 37 (NeurIPS), 2023 [Abstract] [URL] [PDF] [Poster]
  3. Quantifying Human Priors over Social and Navigation Networks Gecia Bravo-Hermsdorff In Fortieth International Conference on Machine Learning (ICML), 2023 [Abstract] [URL] [PDF] [Poster] [Demo of experimental platform]
  4. Quantifying Network Similarity using Graph Cumulants Gecia Bravo-Hermsdorff*, Lee M. Gunderson*, Pierre-André Maugis, and Carey E. Priebe Journal of Machine Learning Research, 24(187):1−27, 2023 [Abstract] [URL] [PDF] [Poster]

2022

  1. Private and Communication-Efficient Algorithms for Entropy Estimation Gecia Bravo-Hermsdorff, Robert Busa-Fekete, Mohammad Ghavamzadeh, Andrés Munõs Medina, and Umar Syed In Neural Information Processing Systems 36 (NeurIPS), 2022 [Abstract] [URL] [PDF] [Summary video (2m35s)]
  2. Statistical Anonymity: Quantifying Reidentification Risks Without Reidentifying Users Gecia Bravo-Hermsdorff, Robert Busa-Fekete, Lee M. Gunderson, Andrés Munõs Medina, and Umar Syed arXiv preprint, 2022 [Abstract] [URL] [PDF]

2021

  1. A Principled (and Practical) Test for Network Comparison Gecia Bravo-Hermsdorff*, Lee M. Gunderson*, Pierre-André Maugis, and Carey E. Priebe arXiv preprint, 2021 [Abstract] [URL] [PDF]
  2. Permutation-Equivariant Neural Networks for Power Spectrum Estimation Gecia Bravo-Hermsdorff Informal write-up, 2021 [Quick summary] [PDF]

2020

  1. Introducing Graph Cumulants: What is the Variance of your Social Network? Lee M. Gunderson* and Gecia Bravo-Hermsdorff* arXiv preprint, 2020 [Quick summary] [Abstract] [URL] [PDF] [Summary video (9m21s)] [Code]
  2. Quantifying Human Priors over Abstract Relational Structures Gecia Bravo-Hermsdorff Ph.D. Dissertation, Princeton University, 2020 [Abstract] [URL] [PDF] [Slides] [Demos of Mturk experiments]

2019

  1. A Unifying Framework for Spectrum-Preserving Graph Sparsification and Coarsening Gecia Bravo-Hermsdorff* and Lee M. Gunderson* In Neural Information Processing Systems 33 (NeurIPS), 2019 [Quick summary] [Abstract] [URL] [PDF] [Poster] [Code] [Summary video (4m14s)] [Reduction playlist]
  2. Gender and Collaboration Patterns in a Temporal Scientific Authorship Network Gecia Bravo-Hermsdorff, Valkyrie Felso, Emily Ray, Lee M. Gunderson, Mary E. Helander, Joana Maria, and Yael Niv Applied Network Science, 4(1), 2019 [Quick summary] [Abstract] [URL] [PDF] [Dataset]
  3. Modeling the Hemodynamic Response Function for Prediction Errors in the Ventral Striatum Gecia Bravo-Hermsdorff and Yael Niv bioRxiv, Cold Spring Harbor Laboratory, 2019 [URL]

2018

  1. Quantifying Humans’ Priors Over Graphical Representations of Tasks Gecia Bravo-Hermsdorff, Talmo Pereira, and Yael Niv In Unifying Themes in Complex Systems IX. ICCS, 2018 [URL]