ING'S
College

LONDON

Intervention Generalization:

A View from Factor Graph Models

Gecia Bravo-Hermsdorff!, David S. Watson?, Jialin Yu!, Jakob Zeitler? & Ricardo Silva'?

3 " *NEURAL
-,i INFORMATION
@

*v2 PROCESSING
0)e®SYSTEMS

'Department of Statistical Science, University College London “Department of Informatics, King's College London

Motivation: extrapolating predictions to new experiments
Cell biology example:
Predicting the effect of

- > @Nﬁ
_ > T MR new combinations of

ﬂ) gene manipulations.
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cox - l o /| e combinatorial space;
"5 Siee it e E”{”;@ unclear smoothness assumptions.
B S pis\.. —> Causal inference

Sach et al. (2005) methods to the rescue!

Scope: peculiarities of our problem

Not a standard causal problem:
* no clear causal ordering (X can be undirected or contain cycles);
" interventions “shake-up” entire groups of variables, possibly overlapping;

= for each regime, data is a single snapshot of the system.
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Problem set-up
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Contributions

= \We introduce the interventional factor model (IFM),
a novel approach for computing causal effects of unseen treatments
(when the causal structure is messy” or otherwise uncertain).

= We establish identifiability criteria for inferring unseen treatment effects.

= Using conformal methods, we provide distribution-free predictive intervals with
finite sample coverage guarantees.

= We implement efficient algorithms for learning such [FMs,
and validate them on a range of semi-synthetic experiments.

ldentifying a new regime (example)

Experiments: simulations calibrated by real data

Set-up:
= Semi-synthetic data based on two biomolecular datasets: Sachs and DREAM

= For each dataset, we fit a DAG and an |IFM,
generating “ground-truth” outcome for each interventional regime.

= Training data: single intervention datasets
= Test data: combination of interventions

Compared models:

= Baseline: no structural assumptions,
direct prediction from vector representation of intervention to outcome

= DAGs: correct skeleton and additive indep. noise

= |[FMs: deep energy-based neural networks using: direct regression (IFM1),
inverse probability weighting (IFM2), or covariate shift regression (IFM3)

Given:. IEM: Ztrain:
this IFM model, o3 o1 02 03
p(x,0) o< fi(x; 01, 02) fo(T; 02, 03) 0 0 0
and training data Y, 0 1 0
Question: 1 0 0
can we identify 1 1 0
the unseen regime 0 0 I
0 | 1
o*=(o1=1,00=1,03=1)7
Answer: YES!
: p(z:(1,1,0)  filei(1LD) fola; (1) ple(l1,1)
p(2;(0,1,0)) — fi(;(0,1)) fo(a;(1,1)) — p(z;(0,1,1))

Dataset: DREAM Dataset: DREAM Dataset: Sachs Dataset: Sachs
Simulation: DAG Simulation: IFM Simulation: DAG Simulation: IFM
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Given:

= A collection of datasets collected under different regimes o € i ai.

Interventional Factor Model:

= An undirected graphical model augmented with interventional variables.

= We assume a factorization of the joint distribution that holds under all regimes:
z

p(r;0) X H fk(ajsk; JFk)?

k=1

Vo € ..

= The potential/energy functions f. are unknown.

= The IFM describe how interventions locally changes these “soft-constraints’.

Goal:

* For all unseen test regimes (0% € Siest = 2\ Ztrain),
we want to learn the density p(x; o*) (and/or predict a specific outcome).

Ildentification results

Two formulations:

1. Algebraic: finds corresponding products/ratios by solving a linear system.

o1 09 O3 {)0 i)l 110 111 é)O é)l 210 211 ?(30 é)l ?}O
g1 0 0 0] v v v
|0 1 0 v v v
| 1 0 0 v v v
! 1 1 0 v v v
| 0 0 1| Vv v v
e 0 1 1 v v v
| 1 0 1 v v
p* | 1 1 1 0 0 0 1 0 0 0 1 0 0 0

PSS (AR S0 < (S )™ = i fa S5

2. Message-passing: if graph among intervention variables o is decomposable.
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= [FMs offer a general approach for inferring causal effects of unseen treatments
under minimal structural assumptions.

Limitations:

= DAG models fare better when the ground truth is a DAG;
black box models perform well when causal effects are (approximately) linear.

Future work:

= applications to experimental design, and Bayesian optimization
= [ncorporating pre-treatment covariates,

= expanding to continuous interventions
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