Intervention Generalization:
 A View from Factor Graph Models

Gecia Bravo-Hermsdorff ${ }^{1}$, David S. Watson², Jialin Yu ${ }^{1}$, Jakob Zeitler ${ }^{3}$ \& Ricardo Silva ${ }^{1,3}$

Motivation: extrapolating predictions to new experiments

> Cell biology example: Predicting the effect of new combinations of gene manipulations.

Prohibitively large combinatorial space; unclear smoothness assumptions,
\Longrightarrow Causal inference
methods to the rescue!

Scope: peculiarities of our problem

Not a standard causal problem:

- no clear causal ordering (X can be undirected or contain cycles);
" interventions "shake-up" entire groups of variables, possibly overlapping
- for each regime, data is a single snapshot of the system.

Problem set-up

Given

- A collection of datasets collected under different regimes $\sigma \in \Sigma_{\text {train }}$
nterventional Factor Model:
- An undirected graphical model augmented with interventional variables.
- We assume a factorization of the joint distribution that holds under all regimes:

$$
p(x ; \sigma) \propto \prod_{k=1}^{l} f_{k}\left(x_{S_{k}} ; \sigma_{F_{k}}\right),
$$

$\forall \sigma \in \Sigma$.

- The potential/energy functions f_{k} are unknown.
- The IFM describe how interventions locally changes these "soft-constraints".
oal:
For all unseen test regimes ($\left.\sigma^{\star} \in \Sigma_{\text {test }}=\Sigma \backslash \Sigma_{\text {train }}\right)$
we want to learn the density $p\left(x ; \sigma^{\star}\right)$ (and/or predict a specific outcome)

Contributions

- We introduce the interventional factor model (IFM)
a novel approach for computing causal effects of unseen treatments (when the causal structure is messy" or otherwise uncertain).
- We establish identifiability criteria for inferring unseen treatment effects.
- Using conformal methods, we provide distribution-free predictive intervals with finite sample coverage guarantees.
- We implement efficient algorithms for learning such IFMs, and validate them on a range of semi-synthetic experiments.

Identifying a new regime (example)

$$
\begin{aligned}
& \text { Given: } \\
& \text { this IFM model, } \\
& p(x, \sigma) \propto f_{1}\left(x ; \sigma_{1}, \sigma_{2} f_{2}\left(x ; \sigma_{2}, \sigma_{3}\right)\right. \\
& \text { and training data } \Sigma_{\text {train }}, \\
& \text { Question: } \\
& \text { can we identify } \\
& \text { the unseen regime } \\
& \sigma^{\star}=\left(\sigma_{1}=1, \sigma_{2}=1, \sigma_{3}=1\right) \text { ? }
\end{aligned}
$$

Answer: YES!

$$
(1,2)-2-(2,3) \quad \frac{p(x ;(1,1,0))}{p(x ;(0,1,0))} \propto \frac{f_{1}(x ;(1,1))}{f_{1}(x ;(0,1))} \frac{f_{2}(x ;(1,1))}{f_{2}(x ;(1,1))} \propto \frac{p(x ;(1,1,1))}{p(x ;(0,1,1))}
$$

dentification results

Two formulations:

1. Algebraic: finds corresponding products/ratios by solving a linear system.

2. Message-passing: if graph among intervention variables σ is decomposable.

Experiments: simulations calibrated by real data

Set-up

Semi-synthetic data based on two biomolecular datasets: Sachs and DREAM
For each dataset, we fit a DAG and an IFM
generating "ground-truth" outcome for each interventional regime.
-Training data: single intervention datasets
Test data: combination of interventions
Compared models:

- Baseline: no structural assumptions,
direct prediction from vector representation of intervention to outcome
- DAGs: correct skeleton and additive indep. noise
- IFMs: deep energy-based neural networks using: direct regression (IFM1) inverse probability weighting (IFM2), or covariate shift regression (IFM3)

Discussion
TLDR:

- IFMs offer a general approach for inferring causal effects of unseen treatments under minimal structural assumptions.

Limitations:

- DAG models fare better when the ground truth is a DAG;
black box models perform well when causal effects are (approximately) linear

Future work

- applications to experimental design, and Bayesian optimization
incorporating pre-treatment covariates,
- expanding to continuous interventions

Acknowledgments

[^0]

[^0]: We thank the anor
 useful discussions.
 Y was supported by by onR grant 62909-19-1-2096.
 SS was partially suppoted br brant EP/W024330/1,
 RS was partially supported by both grants,
 and JZ was supported by UKRI grant EP/SO21566/1.

