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Motivation: extrapolating predictions to new experiments

perturb the states of the measured molecules
(Fig. 1C, panel b) and strengthen inference di-
rectionality. For instance, inhibition of mole-
cule X might lead to inhibition of both X and
Y, whereas inhibition of molecule Y leads only
to inhibition of Y. Thus, we would infer X to
be upstream of Y as shown in Fig. 1B, panel a.
Moreover, because flow cytometry can mea-
sure multiple molecules within each cell, it is
possible to identify complex causal influence
relationships involving multiple proteins. Con-
sider the signaling cascade from X onto Y onto
Z (Fig. 1B, panel a), where correlation exists
between the measured activities of each pair,
including between X and Z (Fig. 1C, panel d).
Bayesian network inference yields the most
concise model, automatically excluding arcs
based on dependencies already explained by the
model. Thus, despite the correlation between
them, the arc between X and Z is omitted,
because the X-Y and the Y-Z relationships
explain the X-Z correlation. Similarly, because
Z and W are both activated by their common
cause Y, we expect their activities to be cor-
related, but no arc appears between them be-
cause their respective arcs from Y mediate
this dependency. Finally, consider a scenario
in which molecule Y was not measured. The
statistical correlation between the observed
activities of X and Z does not depend on ob-
serving Y; therefore, their correlation would
still be detected. An indirect arc would be de-
tected from X onto Z (Fig. 1B, panel b).

Expanding this concept to a real data set,
we applied Bayesian network analysis to mul-
tivariate flow cytometry data. Data were col-
lected after a series of stimulatory cues and
inhibitory interventions (Table 1), with cell
reactions stopped at 15 min after stimulation
by fixation, to profile the effects of each con-
dition on the intracellular signaling networks
of human primary naı̈ve CD4þ T cells, down-
stream of CD3, CD28, and LFA-1 activation
(Fig. 2 shows a currently accepted consensus
network). We made flow cytometry mea-
surements of 11 phosphorylated proteins and
phospholipids [Raf phosphorylated at posi-
tion S259, mitogen-activated protein kinases
(MAPKs) Erk1 and Erk2 phosphorylated at
T202 and Y204, p38 MAPK phosphorylated
at T180 and Y182, Jnk phosphorylated at
T183 and Y185, AKT phosphorylated at S473,
Mek1 and Mek2 phosphorylated at S217 and
S221 (both isoforms of the protein are recog-
nized by the same antibody), phosphorylation
of protein kinase A (PKA) substrates [cAMP
response element–binding protein (CREB),
PKA, calcium/calmodulin-dependent protein
kinase II (CaMKII), caspase-10, and caspase-2]
containing a consensus phosphorylation motif,
phosphorylation of phospholipase C–g (PLC-g)
on Y783, phosphorylation of PKC on S660,
phosphatidylinositol 4,5-bisphosphate (PIP2),
and phosphatidylinositol 3,4,5-triphosphate
(PIP3)] (Table 2) (8, 16). Each independent

Table 1. Known biological effects of perturbations employed. The left-hand column lists the specific
reagents used in each perturbation condition, and the right-hand column classifies the reagent class into
either a general perturbation that overall stimulated the cell or a specific perturbation that acted on a
defined set of molecules. The conditions used in the study were as follows: (i) anti-CD3 þ anti-CD28, (ii)
anti-CD3/CD28 þ ICAM-2 (intercellular adhesion molecule–2), (iii) anti-CD3/CD28 þ U0126, (iv) anti-
CD3/CD28 þ AKT inhibitor, (v) anti-CD3/CD28 þ G06976, (vi) anti-CD3/CD28 þ psitectorigenin, (vii)
anti-CD3/CD28 þ LY294002, (viii) phorbol 12-myristate 13-acetate (PMA), and (ix) b2 cyclic adenosine
3¶,5¶-monophosphate (b2cAMP).

Reagent Reagent class

Anti-CD3/CD28 General perturbation: Activates T cells and induces proliferation and cytokine
production. Induced signaling through the T cell receptor (TCR), activated ZAP70,
Lck, PLC-g, Raf, Mek, Erk, and PKC. The TCR signaling converges on transcription
factors NFkB, NFAT, and AP-1 to initiate IL-2 transcription.

ICAM-2 General perturbation: Induces LFA-1 signaling and contributes to CD3/CD28
signaling that converges on AP-1 and NFAT transcriptional activity.

b2cAMP Specific perturbation: cAMP analog that activates PKA. PKA can regulate NFAT
activation and T cell commitment processes.

AKT inhibitor Specific perturbation: Binds inositol pleckstrin domain of AKT and blocks AKT
translocation to the membrane where normally AKT becomes phosphorylated and
active [median inhibitory concentration (IC50) 0 5 mM]. Inhibition of AKT and
phosphorylation of AKT substrates are needed to enhance cell survival.

U0126 Specific perturbation: Inhibits MEK1 (IC50 0 72 nm) and MEK2 (IC50 0 58 nm) in a
noncompetitive manner (ATP and Erk substrates). Inhibits activation of Erk,
arresting T cell proliferation and cytokine synthesis.

PMA Specific perturbation: PMA activates PKC and initiates some aspects of T cell
activation.

G06976 Specific perturbation: Inhibits PKC isozymes (IC50 G 8 nM). Inhibits PKC and arrests
T cell activation.

Psitectorigenin Specific perturbation: Inhibits phosphoinositide hydrolysis. Inhibits PIP2 production
and disrupts phosphoinositol turnover.

LY294002 Specific perturbation: Phosphatidylinosital 3-kinase (PI3K inhibitor. Inhibits PI3K and
subsequent activation of AKT.

Fig. 2. Classic signaling network and points of intervention. This is a graphical illustration of the
conventionally accepted signaling molecule interactions, the events measured, and the points of
intervention by small-molecule inhibitors. Signaling nodes in color were measured directly. Signaling
nodes in gray were not measured, but are presented to place the signaling nodes that were measured
within contextual cellular pathways. The interventions classified as activators are colored green and
inhibitors are colored red. Intervention site of action is indicated in the figure. Arcs are used to
illustrate connections between signaling molecules; in some cases, the connections may be indirect
and may involve specific phosphorylation sites of the signaling molecules (see Table 3 for details of
these connections). This figure contains a synopsis of signaling in mammalian cells and is not
representative of all cell types, with inositol signaling corelationships being particularly complex.
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Cell biology example:

Predicting the effect of

new combinations of

gene manipulations.

Prohibitively large

combinatorial space;

unclear smoothness assumptions.

=⇒ Causal inference

methods to the rescue!

Scope: peculiarities of our problem

Not a standard causal problem:

no clear causal ordering (X can be undirected or contain cycles);

interventions “shake-up” entire groups of variables, possibly overlapping;

for each regime, data is a single snapshot of the system.
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Figure 1: (a) A dynamic process where only the final step is (simultaneously) observed. Intervention
variables are represented as white squares, random variables as circles, and dashed lines indicate
hidden variables. (b) A bird’s eye unstructured view of the sampling process, where an intervention
vector dictates � the distribution obtained at an agreed-upon time frame T .

distribution describing how intervention variables � interact with a random process X , and a possible
target outcome Y .

Related setups appear in the causal modeling literature on soft interventions [18], including its
use in methods such as causal bandits [45] and causal Bayesian optimization [4] (see Section 6).
However, these methods rely on directed acyclic graphs (DAGs), which may be hard to justify in many
applications. Moreover, in the realistic situation where the target of a real-world intervention is a set

of variables [26] and not only the “child” variable within a DAG factor, the parent-child distinction
is blurred and previous identification results do not apply. Without claiming that our proposal is
appropriate for every application, we suggest the following take on intervention generalization:
model a causal structure as a set of soft constraints, together with their putative (arbitrary but

local) modifications by external actions. Our interventional factor model (IFM) leads to provable
intervention generalization via a factor graph decomposition which, when informative, can be tested
without further assumptions beyond basic relations of conditional independence. IFMs are fully
agnostic with regards to cycles or hidden variables, in the spirit of Dawid [23]’s decision-theoretic
approach to causal inference, where the key ingredient boils down to statements of conditional
independence among random and intervention variables.

Our primary contributions are as follows. (1) We introduce the interventional factor model (IFM),
which aims to solve intervention generalization problems using only claims about which interventions
interact with which observable random variables. (2) We establish necessary and sufficient conditions
for the identifiability of treatment effects within the IFM framework. (3) We adapt existing results
from conformal inference to our setting, providing distribution-free predictive intervals for identifiable
causal effects with guaranteed finite sample coverage. (4) We implement our model using efficient
algorithms, and apply them to a range of semi-synthetic experiments.

2 Problem Statement

Data assumptions. Fig. 1(a) illustrates a generative process common to many applications and
particularly suitable to our framework: a perturbation, here represented by a set of interventional
variables �, is applied and a dynamic feedback loop takes place. Often in these applications (e.g,
experiments in cell biology [66] and social science [59]), the sampling of this process is highly
restrictive, and the time-resolution may boil down to a single snapshot, as illustrated by Fig. 1(b).
We assume that data is given as samples of a random vector X collected cross-sectionally at a
well-defined time-point (not necessarily at equilibrium) under a well-defined intervention vector �.
The importance of establishing a clear sampling time in the context of graphical causal models is
discussed by [21]. The process illustrated in Fig. 1(a) may suggest no particular Markovian structure
at the time the snapshot is taken. However, in practice, it is possible to model the black-box sampling
process represented in Fig. 1(b) in terms of an energy function representing soft constraints [48].
These could be the result of particular equilibrium processes [47], including deterministic differential
equations [40], or empirically-verifiable approximations [59].

The role of a causal model is to describe how intervention � locally changes the energy function. In
the context of causal DAG models, sometimes this takes the guise of “soft interventions” and other
variations that can be called “interventions on structure” [43, 55] or edge interventions [70]. Changes
of structural coefficients in possibly cyclic models have also been considered [37]. The model family
we propose takes this to the most abstract level, modeling energy functions via recombinations of
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Problem set-up

Given:

A collection of datasets collected under different regimes σ ∈ Σtrain.

Interventional Factor Model:

An undirected graphical model augmented with interventional variables.

We assume a factorization of the joint distribution that holds under all regimes:

p(x; σ) ∝
l∏

k=1

fk(xSk
; σFk

), ∀σ ∈ Σ.

The potential/energy functions fk are unknown.

The IFM describe how interventions locally changes these “soft-constraints”.

Goal:

For all unseen test regimes (σ? ∈ Σtest = Σ\Σtrain),

we want to learn the density p(x; σ?) (and/or predict a specific outcome).

Contributions

We introduce the interventional factor model (IFM),

a novel approach for computing causal effects of unseen treatments

(when the causal structure is messy’’ or otherwise uncertain).

We establish identifiability criteria for inferring unseen treatment effects.

Using conformal methods, we provide distribution-free predictive intervals with

finite sample coverage guarantees.

We implement efficient algorithms for learning such IFMs,

and validate them on a range of semi-synthetic experiments.

Identifying a new regime (example)

Given:

this IFM model,

p(x, σ) ∝ f1(x; σ1, σ2)f2(x; σ2, σ3)
and training data Σtrain,

Question:

can we identify

the unseen regime

σ? = (σ1 = 1, σ2 = 1, σ3 = 1)?

a.

X

f1 f2

�1 �2 �3
b.

(1, 2) 2 (2, 3)

c.
�1 �2 �3

0 0 0
0 1 0
1 0 0
1 1 0
0 0 1
0 1 1

Figure 3: (a) An interventional factor model (IFM) with three (binary) intervention variables. (b) The
junction tree of the �-graph associated with the IFM in (a): intervention variables are arranged as a
hypergraph, where the hypervertices represent the sets of intervention variables that share a factor and
the edge represents the overlap between the two sets of intervention variables. (c) A table displaying
the assignments for regimes in ⌃train. From this ⌃train and the assumptions in (a), it is possible to
generalize to the two missing regimes, i.e., �1 = �2 = �3 = 1, and �1 = �3 = 1, �2 = 0.

IFM:

X

f1 f2

�1 �2 �3

⌃train:
�1 �2 �3

0 0 0
0 1 0
1 0 0
1 1 0
0 0 1
0 1 1

b.

(1, 2) 2 (2, 3)
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Answer: YES!
a.
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f1 f2
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b.

(1, 2) 2 (2, 3)

c.
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Figure 3: (a) An interventional factor model (IFM) with three (binary) intervention variables. (b) The
junction tree of the �-graph associated with the IFM in (a): intervention variables are arranged as a
hypergraph, where the hypervertices represent the sets of intervention variables that share a factor and
the edge represents the overlap between the two sets of intervention variables. (c) A table displaying
the assignments for regimes in ⌃train. From this ⌃train and the assumptions in (a), it is possible to
generalize to the two missing regimes, i.e., �1 = �2 = �3 = 1, and �1 = �3 = 1, �2 = 0.

This identification problem is not analyzed in setups such as causal Bayesian optimization [4, 75],
which build on DAGs with interventions targeting single variables. Without this analysis, it is unclear
to what extent the learning might be attributed to artifacts due to the choice of prior distribution or
regularization, particularly for a sparsely populated ⌃train. As an extreme case that is not uncommon
in practice, if we have binary intervention variables and never observe more than one �i set to
1 within the same experiment, it is unclear why we should expect a non-linear model to provide
information about pairs of assignments �i = �j = 1 using an off-the-shelf prior or regularizer.
Although eventually a dense enough process of exploration will enrich the database of experiments,
this process may be slow and less suitable to situations where the goal is not just to maximize some
expected reward but to provide a more extensive picture of the dose-response relationships in a
system. While the smoothness of p(x;�) as a function of � is a relevant domain-specific information,
it complicates identifiability criteria without further assumptions. In what follows, we assume no
smoothness conditions, meaning that for some pair p(x;�a), p(x;�b), with a 6= b, these probability
density/mass functions are allowed to be arbitrarily different. Such setting is particularly suitable for
situations where interventions do take categorical levels, with limited to no magnitude information.

Identification: preliminaries. Before introducing the main result of this section, let us start by
considering the toy example displayed in Fig. 3: Fig. 3(a) shows the graphical model (how X could
be factorized is not relevant here), and Fig. 3(c) shows the assignments for the training regimes
⌃train (all intervention variables are binary). This training set lacks the experimental assignment
�1 = �2 = �3 = 1.6 However, this regime is implied by the model and ⌃train. To see this, consider
the factorization p(x;�) / f1(x;�1,�2)f2(x;�2,�3), it implies:

p
�
x; (1, 1, 0)

�

p
�
x; (0, 1, 0)

� /
f1

�
x; (1, 1)

�

f1

�
x; (0, 1)

� ,

where we used (1, 1, 0) etc. to represent the � assignments. Because both (1, 1, 0) and (0, 1, 0) are in
⌃train, the ratio is identifiable up to a multiplicative constant. Moreover, multiplying and dividing the
result by f2

�
x; (1, 1)

�
, we get:

p
�
x; (1, 1, 0)

�

p
�
x; (0, 1, 0)

� /
f1

�
x; (1, 1)

�

f1

�
x; (0, 1)

� f2
�
x; (1, 1)

�

f2

�
x; (1, 1)

� /
p
�
x; (1, 1, 1)

�

p
�
x; (0, 1, 1)

� ,

from which, given that (0, 1, 1) is also in ⌃train, we can derive p
�
x; (1, 1, 1)

�
.

3.1 Message Passing Formulation

The steps in this reasoning can be visualized in Fig. 3(b). The leftmost hypervertex represents (�1,�2)
and suggests �1 can be isolated from �3. The first ratio p

�
x; (1, 1, 0)

�
/p

�
x; (0, 1, 0)

�
considers three

roles: �1 can be isolated (it is set to a “baseline” of 0 in the denominator) and �3 is yet to be
considered (it is set to the baseline value of 0 in the numerator). This ratio sets the stage for the next
step where (�2,�3) is “absorbed” in the construction of the model evaluated at (1, 1, 1). The entries
in ⌃train were chosen so that we see all four combinations of (�1,�2) and all four combinations of

6As well as the assignment �1 = �3 = 1,�2 = 0, which can be recovered by an analogous argument.
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p
(
x; (1, 1, 0)

)
p
(
x; (0, 1, 0)

) ∝
f1
(
x; (1, 1)

)
f1
(
x; (0, 1)

)f2
(
x; (1, 1)

)
f2
(
x; (1, 1)

) ∝
p
(
x; (1, 1, 1)

)
p
(
x; (0, 1, 1)

)
Identification results

Two formulations:

1. Algebraic: finds corresponding products/ratios by solving a linear system.

�1 �2 �3 f
00
1 f

01
1 f

10
1 f

11
1 f

00
2 f

01
2 f

10
2 f

11
2 f

00
3 f

01
3 f

10
3 f

11
3

q1 0 0 0 X X X
q2 0 1 0 X X X
q3 1 0 0 X X X
q4 1 1 0 X X X
q5 0 0 1 X X X
q6 0 1 1 X X X
q7 1 0 1 X X X
p
? 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1

Figure 4: Example of how to infer the target distribution p
�
x; (1, 1, 1)

�
from the other seven possible

regimes given the postulated factorization p(x;�) / f1(x;�1,�2)f2(x;�2,�3)f3(x;�1,�3). We
use fab

k as a shorthand notation for fk(x;�k1 = a,�k2 = b), e.g, p
�
x; (1, 1, 1)

�
/ f

11
1 f

11
2 f

11
3 . For a

PR-transformation (f00
1 f

00
2 f

00
3 )q1 ⇥ (f01

1 f
10
2 f

00
3 )q2 ⇥ · · ·⇥ (f10

1 f
01
2 f

11
3 )q7 f

11
1 f

11
2 f

11
3 up to a mul-

tiplicative constant independent of x, we need to find a solution satisfying: q1 + q5 = 0, q2 + q6 = 0,
. . . , q7 = 1. (In the table, this can be seen by going through each f

ab
k column and adding up the

corresponding exponents qj when there is a tick in row j; the sum must agree with the corresponding
entry in the final row). A solution is q1 = q4 = q6 = q7 = 1, q2 = q3 = q5 = �1, corresponding to
p(x;�?) /

�
p(x;�1)p(x;�4)p(x;�6)p(x;�7)

�
/
�
p(x;�2)p(x;�3)p(x;�5)

�
.

The solution to the system gives the PR-transformation. An example is shown in Fig. 4. The main idea
is that, for a fixed x, any factor fk(xSk ;�Fk) can algebraically be interpreted as an arbitrary symbol
indexed by �Fk , say “f�Fk

k ”. This means that any density p(x;�i) is (proportional to) a “squarefree”
monomial mi in those symbols (i.e, products with exponents 0 or 1). We need to manipulate a set of
monomials (the unnormalized densities in P(⌃train)) into another monomial m? (the unnormalized
p(x;�?)). More generally, the possible set functions g(·), h(·) such that g(m?

, {m1
, . . . ,m

t}) =
h({m1

, . . . ,m
t}), with g(·) invertible in m

?, suggest that g(·) and h(·) must be the product function
(monomials are closed under products, but not other analytical manipulations), although we stop short
of stating formally the conditions required for PR-transformations to be complete in the space of all
possible functions of P(⌃train). This would be a stronger claim than Theorem 3.2, which shows that
Eq. (4) is almost-everywhere complete in the space of PR transformations.

The message passing scheme and the algebraic method provide complementary views, with the former
giving a divide-and-conquer perspective that identifies subsystems that can be estimated without
requiring changes from the baseline treatment everywhere else. The algebraic method is more general,
but suggests no hierarchy of simpler problems. These results show that the factorization over X is
unimportant for identifiability, which may be surprising. Appendix C discusses the consequences of
this finding, along with a discussion about requirements on the size of ⌃train.

4 Learning Algorithms

The identification results give a license to choose any estimation method we want if identification is
established — while we must make the assumption of the model factorizing according to a postulated
IFM, we are not required to explicitly use a likelihood function. Theorems 3.1 and 3.2 provide ways
of constructing a target distribution p(x;�?) from products of ratios of densities from P(⌃train). This
suggests a plug-in approach for estimation: estimate products of ratios using density ratio estimation
methods and multiply results. However, in practice, we found that fitting a likelihood function directly
often works better than estimating the product of density ratios, even for intractable likelihoods. We
now discuss three strategies for estimating some E[Y ;�?] of interest.

Deep energy-based models and direct regression. The most direct learning algorithm is to first
maximize the sum of log-likelihoods L(✓;D1

, . . . ,Dt) :=
Pt

i=1

Pni

j=1 log p✓(x
i(j);�i), where ni

is the number of samples in the ith regime. The parameterization of the model is indexed by a
vector ✓, which defines p(·) as log p✓(x;�) :=

Pl
k=1 �✓k,�Fk

(xSk) + constant. Here, �✓(·) is a
differentiable black-box function, which in our experiments is a MLP (aka a multilayer perceptron,
or feedforward neural network). Parameter vector ✓k,�Fk

is the collection of weights and biases
of the MLP, a different instance for each factor k and combination of values in �Fk . In principle,
making the parameters smooth functions of �Fk is possible, but in the interest of simplifying the
presentation, we instead use a look-up table for completely independent parameters as indexed by the
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(f 00
1 f 00

2 f 00
3 )q1 × (f 01

1 f 10
2 f 00

3 )q2 × · · · × (f 10
1 f 01

2 f 11
3 )q7 = f 11

1 f 11
2 f 11

3

2. Message-passing: if graph among intervention variables σ is decomposable.
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Figure 7: The factor graph used as an illustration of the technique in the proof of Theorem 3.1.
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Figure 8: The �-graph corresponding to the factor graph in Figure 7.
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Figure 9: A (directed) junction tree corresponding to the undirected graph in Figure 8.

Proof of Theorem 3.2. Sufficiency follows immediately from the fact that, under Eq (4) being
satisfied, the PR-transformation

Qt
i=1 p(x;�

i)qi is equivalent to

lY

k=1

Y

�v
Fk

2Dk

fk(xSk ;�
v
Fk
)

Pt
i=1:�i

Fk
=�v

Fk

qi
=

lY

k=1

fk(xSk ;�
?
Fk
) / p(x;�?), (8)

for all x.

For almost-everywhere necessity, let zkv := log fk(xSk ;�
v
Fk
). Taking the logarithm on both sides of

the equality in Eq. (8), we have

lX

k=1

X

�v
Fk

2Dk

zkv

0

B@
tX

i=1:�i
Fk

=�v
Fk

qi

1

CA =
lX

k=1

zk? ,
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Experiments: simulations calibrated by real data

Set-up:

Semi-synthetic data based on two biomolecular datasets: Sachs and DREAM

For each dataset, we fit a DAG and an IFM,

generating “ground-truth” outcome for each interventional regime.

Training data: single intervention datasets

Test data: combination of interventions

Compared models:

Baseline: no structural assumptions,

direct prediction from vector representation of intervention to outcome

DAGs: correct skeleton and additive indep. noise

IFMs: deep energy-based neural networks using: direct regression (IFM1),

inverse probability weighting (IFM2), or covariate shift regression (IFM3)

Dataset: DREAM
Simulation: DAG

Black Box DAG IFM1 IFM2
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Discussion

TLDR:

IFMs offer a general approach for inferring causal effects of unseen treatments

under minimal structural assumptions.

Limitations:

DAG models fare better when the ground truth is a DAG;

black box models perform well when causal effects are (approximately) linear.

Future work:

applications to experimental design, and Bayesian optimization

incorporating pre-treatment covariates,

expanding to continuous interventions
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