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We have a clever method that gives this inverse map.
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parameters are block/community structure
�
fik, BkkÕ

�

describes the global structure (“shape”)
easy to sample from, our clever method can easily infer

Subgraphs from SBMs

The Pairwise PronyAlgorithm
Lee M. Gunderson 1

Gecia Bravo-Hermsdorff 2 Peter Orbanz 1

1Gatsby Computational Neuroscience Unit, University College London (UCL)
2Department of Statistical Sciences, University College London (UCL)

Posing the Problem

Given some prescribed subgraph densities,
efficiently infer a natural model

from which one can easily sample.
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And we can extract the entries one-by-one using the known eigenvectors.

The Pairwise Prony Prescription

To obtain L latent values of a rooted subgraph:

1. Choose a vector v of L or more rooted subgraphs

2. Take the outer gluing product v ¶ v€

3. Make M by taking the inner product with fi

4. Make MÕ by gluing the desired rooted subgraph
before taking the inner product with fi

5. The eigenvalues of MÕM≠1 are the L latent values
of the subgraph used to make MÕ in step 4
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Even though the degrees are the same, we can still get the edge probabilities!

Some Synthetic Simulations

Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (blue) and adding the “two-hop” density (green).
Figures correspond to SBMs with 2, 3, and 4 blocks, respectively. Vertical axis denotes the average squared error of the probability of a random dyad, i.e.
fi€

true(Btrue ≠ Binfer)2fitrue. The black curves denote the expected squared error if the latent blocks of the nodes were provided.
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Adding “two-hop” subgraphs helps recover (dis)assortativity.
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Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (blue) and adding the “two-hop” density (green).
Figures correspond to SBMs with 2, 3, and 4 blocks, respectively. Vertical axis denotes the average squared error of the probability of a random dyad, i.e.
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true(Btrue ≠ Binfer)2fitrue. The black curves denote the expected squared error if the latent blocks of the nodes were provided.
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Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (blue) and adding the “two-hop” density (green).
Figures correspond to SBMs with 2, 3, and 4 blocks, respectively. Vertical axis denotes the average squared error of the probability of a random dyad, i.e.
fi€

true(Btrue ≠ Binfer)2fitrue. The black curves denote the expected squared error if the latent blocks of the nodes were provided.
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Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (blue) and adding the “two-hop” density (green).
Figures correspond to SBMs with 2, 3, and 4 blocks, respectively. Vertical axis denotes the average squared error of the probability of a random dyad, i.e.
fi€

true(Btrue ≠ Binfer)2fitrue. The black curves denote the expected squared error if the latent blocks of the nodes were provided.
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Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (blue) and adding the “two-hop” density (green).
Figures correspond to SBMs with 2, 3, and 4 blocks, respectively. Vertical axis denotes the average squared error of the probability of a random dyad, i.e.
fi€

true(Btrue ≠ Binfer)2fitrue. The black curves denote the expected squared error if the latent blocks of the nodes were provided.
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Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (blue) and adding the “two-hop” density (green).
Figures correspond to SBMs with 2, 3, and 4 blocks, respectively. Vertical axis denotes the average squared error of the probability of a random dyad, i.e.
fi€

true(Btrue ≠ Binfer)2fitrue. The black curves denote the expected squared error if the latent blocks of the nodes were provided.
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Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (blue) and adding the “two-hop” density (green).
Figures correspond to SBMs with 2, 3, and 4 blocks, respectively. Vertical axis denotes the average squared error of the probability of a random dyad, i.e.
fi€

true(Btrue ≠ Binfer)2fitrue. The black curves denote the expected squared error if the latent blocks of the nodes were provided.
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Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (blue) and adding the “two-hop” density (green).
Figures correspond to SBMs with 2, 3, and 4 blocks, respectively. Vertical axis denotes the average squared error of the probability of a random dyad, i.e.
fi€

true(Btrue ≠ Binfer)2fitrue. The black curves denote the expected squared error if the latent blocks of the nodes were provided.
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Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (blue) and adding the “two-hop” density (green).
Figures correspond to SBMs with 2, 3, and 4 blocks, respectively. Vertical axis denotes the average squared error of the probability of a random dyad, i.e.
fi€

true(Btrue ≠ Binfer)2fitrue. The black curves denote the expected squared error if the latent blocks of the nodes were provided.
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Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (blue) and adding the “two-hop” density (green).
Figures correspond to SBMs with 2, 3, and 4 blocks, respectively. Vertical axis denotes the average squared error of the probability of a random dyad, i.e.
fi€

true(Btrue ≠ Binfer)2fitrue. The black curves denote the expected squared error if the latent blocks of the nodes were provided.
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2. Distilling the Degree Distribution
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...then the spectrum exactly recovers the degrees of the blocks!

4. General Recipe

1. Choose a vector v of K or more rooted subgraphs
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...using the known eigenvectors, we can extract the entries one-by-one!

6. Considering Cycles

Even when the degrees are the same...
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7. Some Synthetic Simulations

By adding additional subgraphs...
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...we can better resolve similar degrees!

leemgunderson.github.io NeurIPS 2023 lgunderson@ucl.ac.uk

https://leemgunderson.github.io/
mailto:lgunderson@ucl.ac.uk

