The Graph Pencil Method:

 Mapping Subgraph Densities to Stochastic Block Models

Our clever method gives this inverse map!

$\underbrace{\left(\pi_{k}, B_{k k^{\prime}}\right)_{k, k^{\prime} \in[K]}}_{$| Stoctastic Block Model |
| :--- |
| with $K \text { communities }$ |$}$| \ldots by converting them into a Stochastic Block Model! |
| :--- |
| " latent blocks $/$ deommunities $\left(\pi_{k}, B_{k k^{\prime}}\right)$ |

1. Subgraphs from SBMs

2. Distilling the Degree Distribution

Put the star subgraph densities into two matrices:

$$
\text { eigvals }\left(\mathbf{M}^{\prime} \mathbf{M}^{-1}\right)=\left\{d_{k}\right\}
$$

.then the spectrum exactly recovers the degrees of the blocks!

4. General Recipe

1. Choose a vector \mathbf{v} of K or more rooted subgraphs
. Take the outer gluing product $\mathbf{v} \circ \mathbf{v}^{\top}$
Make \mathbf{M} by taking the inner product with $\boldsymbol{\pi}$
. Make \mathbf{M}^{\prime} by gluing the desired rooted subgraph before taking the inner product with $\boldsymbol{\pi}$
The eigenvalues of $\mathbf{M}^{\prime} \mathbf{M}^{-1}$ are the K latent values of the subgraph used to make \mathbf{M}^{\prime} in step 4

5. Proving Prony

$\mathbf{M}^{\prime}=\mathbf{V} \operatorname{diag}(\boldsymbol{\pi} \mathbf{d}) \mathbf{V}^{\top}$
$\mathbf{M}^{\prime} \mathbf{M}^{-1}=\left(\mathbf{V} \operatorname{diag}(\boldsymbol{\pi} \mathbf{d}) \mathbf{V}^{\top}\right)\left(\mathbf{V} \operatorname{diag}(\boldsymbol{\pi}) \mathbf{V}^{\top}\right)^{-1}=\mathbf{V} \operatorname{diag}(\mathbf{d}) \mathbf{V}^{-1}$
3. Extracting the Edge Expectations

For the edge probabilities, use the bi-star subgraph densities:

$$
\begin{aligned}
& \operatorname{eigvals}\left(\mathbf{M}^{\prime} \mathbf{M}^{-1}\right)=\left\{B_{k k^{\prime}}\right\}_{1 \leq k \leq k^{\prime} \leq K}
\end{aligned}
$$

...using the known eigenvectors, we can extract the entries one-by-one!
6. Considering Cycles

Even when the degrees are the same...

$$
\operatorname{eigvals}\left(\mathbf{M}^{\prime} \mathbf{M}^{-1}\right)=\left\{B_{k=k^{\prime}}, B_{k \neq k^{\prime}}\right\}
$$

...we can still recover the edge probabilities!
7. Some Synthetic Simulations

By adding additional subgraphs...

number of nodes
.we can better resolve similar degrees!

