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Abstract

In this work, we describe a method that determines an exact map from a finite set of
subgraph densities to the parameters of a stochastic block model (SBM) matching
these densities. Given a number K of blocks, the subgraph densities of a finite
number of stars and bistars uniquely determines a single element of the class of
all degree-separated stochastic block models with K blocks. Our method makes it
possible to translate estimates of these subgraph densities into model parameters,
and hence to use subgraph densities directly for inference. The computational
overhead is negligible; computing the translation map is polynomial in K, but
independent of the graph size once the subgraph densities are given.

1 Introduction

The class of infinitely exchangeable random graphs is a large class of network models that contains
all graphon models [6, 21] and stochastic block models (SBMs) [1, 2, 12]. The key statistics of such
random graphs are subgraph densities: each fixed, finite graph defines a subgraph density, and it is
well known that every exchangeable graph distribution is completely determined by the collection of
all its densities of finite subgraphs [12, 21].

In general, an infinite number of densities is required to uniquely determine an infinitely exchangeable
graph distribution. For a subclass of models, a finite number of densities suffice. In combinatorics,
these random graph distributions are called finitely forcible [21]. In particular, every stochastic block
model is completely determined by a finite number of subgraph densities [21]. Such a finite number
of subgraph densities can be consistently estimated at a guaranteed asymptotic rate from a single
graph-data as this graph grows large [3, 17, 30].

It has long been recognized that the role subgraph densities play for exchangeable network models is
analogous to that played by moments for estimation problems on Euclidean sample spaces [5, 7, 12,
22]. On Euclidean space, the method of moments [24, 26] is a powerful inference tool, in particular
for mixture models [4, 14]. This suggests that subgraph densities should be well-suited for inference
in stochastic block models in particular, since these models are a network analogue of mixture models
and only a finite number of densities must be estimated.

Nonetheless, most inference algorithms used in practice (e.g., [8, 9, 13, 18, 25]) do not rely on
subgraph densities, but rather on some combination of maximum likelihood estimation, MCMC
sampling, variational inference, clustering of the nodes, or other heuristics. The reason is that
estimating subgraph densities is only a first step in the inference process — once the densities are
known, they must be translated into an estimate of a graphon or stochastic block model.

This paper introduces a new method that does so by generalizing a classical strategy for inferring
latent sources (sometimes known as Prony’s method [26]) to graph data. The classical Prony’s
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method is an example of an algorithm that recovers a sparse signal from noisy data, and is related to
compressed sensing [28] and the notion of a matrix pencil [23].

Our method proceeds in two steps. The first step (section 3.2) is essentially an application of Prony’s
method to estimate properties of individual latent blocks, such as their normalized degrees and their
relative sizes. The second step (section 4.2) is entirely new; by leveraging the properties inferred
in the first step, it uses a generalization of Prony’s method to infer properties of pairs of the latent
blocks, such as the connection properties of a stochastic block model.

The proposed method solves several problems simultaneously: it estimates parameters without
laborious and delicate numerical fitting, and makes it possible to efficiently sample from the model
without the frequently-encountered problem of degeneracy that plagues many intuitively attractive
network models [15, 16, 19]. In contrast to other algorithms for fitting stochastic block models (e.g.,
[8, 10, 11, 25]) and graphons (e.g, [2, 20, 29]), our method requires essentially zero computational
overhead once the subgraph densities have been estimated.

2 Notation and Definitions

We use lower-case bold symbols to denote vectors, and upper-case bold symbols to denote matrices
and higher-order tensors. Non-bold versions of these symbols refer to particular entries of the bold
versions, indicated by their subscripts. We use ◦ to denote Hadamard product (i.e., element-wise
multiplication), • for inner product, and angled brackets ⟨ ⟩ to denote expectation.

A graph G is defined by a set of vertices/nodes V (G) and a set of edges E(G) ⊆ V (G)× V (G) de-
noting pairwise connections between nodes. For simplicity, here we focus on undirected, unweighted
graphs, with no self-loops or parallel edges. Indexing the N = |V (G)| nodes by the positive integers
[N ], we can represent G by its N -by-N adjacency matrix A, where Aij = Aji = 1 if there is an
edge between nodes i and j, and 0 otherwise.

A stochastic block model SBM(π,B) is defined by: π, a probability vector of length K, which assigns
each node to one of K (unobserved) latent blocks/communities; and B, a K-by-K connectivity
matrix, whose entries Bkk′ give the probability of an edge connecting a node in block k to a node in
block k′. As we are considering undirected graphs, B is symmetric.

Sampling a graph from a SBM(π,B) proceeds in two steps. First, for each node n ∈ [N ], sample its
latent block k(n) ∈ [K] independently from π. Then, for each pair of nodes (n, n′), include an edge
between them independently with probability Bk(n)k(n′). Thus, a stochastic block model defines a
distribution over graphs with N nodes for all choices of N , and can be identified with the limit of
this sequence of distributions as N → ∞.

As mentioned in the introduction, such infinitely exchangeable graph distributions can be character-
ized by their homomorphism densities1 µ(g). Indexed by (some family of) subgraphs g, homomor-
phism densities are the graphical analogue of the classical moments of a distribution [5, 12, 22]. For
a stochastic block model, one can compute µ(g) by summing over all possible assignments of the
vertices of g to the blocks of SBM(π,B) [21]:

µ
(
g
)∣∣∣

SBM(π,B)︸ ︷︷ ︸
homomorphism density
µ of a subgraph g in an
SBM given by π and B

with K blocks

=

K|V (g)|∑
φ:V (g)→[K]︸ ︷︷ ︸

sum over all maps φ
from vertices in g to

the K blocks

[ ( ∏
i∈V (g)

πφ(i)

)
︸ ︷︷ ︸

probability of assigning
the vertices to those blocks

×

( ∏
(i,j)∈E(g)

Bφ(i)φ(j)

)
︸ ︷︷ ︸

probability of the
corresponding edges

]
(1)

In the following two sections (sections 3 and 4), we describe how to recover the parameters of
an SBM from its subgraph densities. Later, in section 5, we describe how to infer these subgraph
densities using a graph sampled from such an SBM.

1Note that the notion of homomorphism only enforces that the edges in g be present; it does not enforce the
absence of edges between pairs of nodes in g that do not share an edge. For example, when g has no edges, the
homomorphism density is always 1. This is in contrast to the notion of induced subgraph density, which does
enforce the absence of those edges.
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3 Mapping Star Densities to Block Degrees

As the first step of our method, we obtain the normalized degrees of the blocks d (equation (4)), as
well as their relative sizes π. This can be seen as an application of the classical matrix pencil method
to the degree distribution, for which the density of the star subgraphs serve as sufficient statistics.

3.1 Classical Coin Collecting

Before we explain our graph pencil method, let us consider the simpler case of a mixture model for
infinitely exchangeable sequences of binary variables. Also known as the Bernoulli mixture model
[14, 27], such a distribution can be thought of as the outcomes of (some number of) flips of (some
number of) biased coins, where each coin is sampled i.i.d. from a (possibly unequal) mixture of K
different biases.

To recover the parameters of this model, one must infer the K (unobserved) latent biases bk, as well
as the fraction πk of coins with each bias. Note that one does not know which of the coins have the
same latent bias (otherwise the inference problem would be trivial).

The moments of this distribution are the expectation of powers of these latent biases, which are
indexed by the exponents r ∈ N:

⟨br⟩ =
∑
k

πkb
r
k (2)

Note that these moments can be consistently estimated from the observed data, as we are averaging
over the latent variables. From these moments, one can systematically infer the mixture proportion π
and the biases b using the matrix pencil method.

In short, construct two matrices C and C′, with entries Cij = ⟨bi+j⟩ and C ′
ij = ⟨bi+j+1⟩:

C =


⟨b0⟩ ⟨b1⟩ · · · ⟨bK−1⟩
⟨b1⟩ ⟨b2⟩ · · · ⟨bK⟩

...
...

. . .
...

⟨bK−1⟩ ⟨bK⟩ · · · ⟨b2K−2⟩

 C′ =


⟨b1⟩ ⟨b2⟩ · · · ⟨bK⟩
⟨b2⟩ ⟨b3⟩ · · · ⟨bK+1⟩

...
...

. . .
...

⟨bK⟩ ⟨bK+1⟩ · · · ⟨b2K−1⟩

 (3)

While not immediately obvious, it is easy to show that the eigenvalues of C′C−1 are the entries of
b. From these, it is straightforward to obtain the associated entries of π. In the next section, we
show why this is the case, while superficially replacing the biases b of the latent coin types with the
normalized average degrees d of the latent node blocks.

3.2 Distilling the Degree Distribution

The first step of our graph pencil method is to apply the standard matrix pencil method to the obtain
the average normalized degree of each of the K latent blocks (that is, the likelihood that a random
node shares an edge with a node in block k). Denoted by d, the entries of this vector are:

dk =
∑
j

πjBjk (4)

These dk are latent parameters of the blocks, so we can solve for them in exactly the same way as we
did for bk in the previous coin example. To this end, we consider the analogous moments:

⟨dr⟩ =
∑
k

πkd
r
k (5)

As before, while πk and dk are unobserved, the resulting moments can be consistently estimated from
observations. In particular, they are precisely the homomorphism densities of the star subgraphs:

⟨d0⟩ = µ
( )

= 1 ⟨d1⟩ = µ
( )

⟨d2⟩ = µ
( )

⟨d3⟩ = µ
( )

. . . (6)
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We then define the two matrices C and Cd, with entries C ij = ⟨di+j⟩ and Cd
ij = ⟨di+j+1⟩, and

the eigenvalues of Cd(C )−1 are the normalized degrees of the K blocks. To see why, notice that
C can be written as a sum of K rank-1 matrices (weighted by π):

C =
∑
k

πk


d0k d1k · · · dK−1

k

d1k d2k · · · dKk
...

...
. . .

...
dK−1
k dKk · · · d2K−2

k

 =
∑
k

πk


d0k
d1k
...

dK−1
k


[

d0k d1k · · · dK−1
k

]

=


d01 · · · d0K
...

. . .
...

dK−1
1 · · · dK−1

K




π1 · · · 0
...

. . .
...

0 · · · πK




d01 · · · dK−1
K

...
. . .

...
d0K · · · dK−1

K


= V diag(π)V⊤ (7)

where we have defined V as the matrix with entries Vjk = dj−1
k , i.e.:

V =


d01 d02 · · · d0K
d11 d12 · · · d1K
...

...
. . .

...
dK−1
1 dK−1

2 · · · dK−1
K

 (8)

By decomposing Cd in the same manner, we get:

Cd = V diag(πd)V⊤ (9)

where diag(πd) is the diagonal matrix with entries πkdk.

We now see that Cd(C )−1 can be diagonalized as follows:

Cd(C )−1 =
(
V diag(πd)V⊤)(V diag(π)V⊤)−1

= V diag(πd)V⊤(V⊤)−1
diag(π−1)V−1

= V diag(πd) diag(π−1)V−1

= V diag(d)V−1 (10)

Hence, the eigenvalues of Cd(C )−1 are indeed the normalized degrees d of the K latent blocks:

eigval
(
Cd(C )−1

)
=
{
dk

}
k∈[K]

(11)

Remark 1 (Degree separated assumption). This is where the assumption of degree-separated
blocks is used; if the normalized degrees of the blocks are not unique, then V will not be invertible.

From the entries of d, we know the entries of V, and can solve a linear system of equations for the
corresponding entries of π: ∑

k

Vjkπk = ⟨dj−1⟩ (12)

4 From Bistar Densities to a Stochastic Block Model

This second step of our graph pencil method is the main insight of our paper. It uses the results from
the previous step to reconstruct the connection probabilities Bk,k′ .
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4.1 Gluing Graphs: An Algebra

We now describe a natural algebra over rooted subgraphs (see Chapter 6 of [21]). We find that using
this notation makes our method easier to understand, and facilitates reasoning about its generalizations.
For a longer introduction, see appendix A.

Recall the definition of homomorphism subgraph densities of an SBM in equation (1). For a
given distribution SBM(π,B), each subgraph g corresponds to a scalar density µ(g). Rooted
homomorphism subgraph densities can be seen as a generalization of this notion. In addition to
the subgraph g, (singly-)rooted densities also require a designated “rooted” vertex v ∈ V (g). And
instead of a single scalar, they correspond to (a vector of) K scalars µ(g, v), indexed by the block
k ∈ [K] to which the rooted vertex v is mapped:

µk

(
g, v
)∣∣∣

SBM(π,B)︸ ︷︷ ︸
homomorphism density
µ of a subgraph g with

rooted vertex v in block k

=

K|V (g)|−1∑
φ:V (g)→[K]
s.t. φ(v)=k︸ ︷︷ ︸

sum over all maps φ that
send vertex v to block k

[( ∏
i∈V (g)\v

πφ(i)

)
︸ ︷︷ ︸
probability of assigning
the remaining vertices

to those blocks

×

( ∏
(i,j)∈E(g)

Bφ(i)φ(j)

)
︸ ︷︷ ︸

probability of the
corresponding edges

]
(13)

The sum is now over maps φ that send the rooted vertex v to a particular block k, and the probability
of assigning the vertices V (g) to blocks includes only the remaining “unrooted” vertices. All the
edges E(g) contribute to the product exactly as in equation (1).

A rooted vertex with a single edge corresponds to the normalized degrees of the K blocks:

(rooted vertex with an edge) ←→ d (normalized degrees of the blocks) (14)

Rooted subgraphs may be combined via the gluing product, denoted by ◦. The gluing product
corresponds to taking their disjoint union, then merging (i.e., “gluing”) the rooted vertices:

(gluing rooted vertices) ◦ = ←→ d ◦ d = d2 (entrywise multiplication)

◦ = ←→ d ◦ d2 = d3

◦ = ←→ d2 ◦ d3 = d5 (15)

Algebraically, the gluing product corresponds to entrywise multiplication of the vectors, also known
as the Hadamard product.

Finally, to convert a rooted subgraph into an observable subgraph density, the rooted vertex may be
“unrooted” by taking the dot product with π:

(unrooting vertices) ←→ d3 • π = ⟨d4⟩ (dot product with π) (16)

Table 1: Operations using homomorphism densities of singly-rooted subgraphs.

glyph symbol meaning

d = B • π vector of the K normalized degrees
d2 = d ◦ d entrywise multiplication
d3 • π homomorphism density of subgraph

Before describing how to recover the entries of B, let us summarize the method for recovering the
normalized degrees from the previous section using the language of rooted graphs.

First, consider a vector v of rooted subgraphs, and take the outer product of this vector with itself
where entries are combined via the gluing product.

v =


 v ◦ v⊤ =


 ◦ [ ]

=


 (17)
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For an SBM with K blocks, this vector must have length (at least) K. While the rooted subgraph den-
sities are not directly observable, their unrooted counterparts are, and the entries of C (equation (3),
left) are given by the densities of these unrooted versions:

C =
(
v ◦ v⊤

)
• π =


 (18)

(The glyph containing an unrooted vertex and no edges evaluates to 1.)

To obtain the second matrix Cd (equation (3), right), glue the rooted subgraph to all entries before
unrooting:

Cd =
((

v ◦ v⊤
)
◦
)
• π =


 (19)

Indeed, the reason that the spectrum of C (Cd)−1 gives the normalized degrees d of the latent
blocks is precisely because we glued an extra copy of the corresponding rooted subgraph in the
construction of Cd. The next section follows a similar recipe.

4.2 Extracting the Edge Expectations

The previous matrices C and Cd were obtained by taking a dot product that sums over the K blocks.
This allowed us to obtain properties of a single block (e.g., its degree dk). The first main insight of
this paper is that the matrix pencil method can also be used to obtain properties of pairs of blocks
(i.e., their connection probability Bkk′ ) by summing over such pairs.

The extension of the gluing algebra to birooted subgraphs is relatively straightforward; a birooted
subgraph (g;u, v) has two (distinct) rooted vertices, and their gluing product is given by taking the
disjoint union then separately merging the vertices rooted u and the vertices rooted v.

Table 2: Operations using homomorphism densities of doubly-rooted subgraphs.

glyph symbol meaning

d1⊤ = L row matrix of (left) normalized degrees
1d⊤ = R column matrix of (right) normalized degrees
B matrix of connection probabilities
L2 ◦B ◦R entrywise multiplication
π •

(
L2 ◦B ◦R

)
• π = µ

( )
observable subgraph density

For an SBM with K blocks, there are K +
(
K
2

)
degrees of freedom for the entries of B. So we define

a vector v of (at least) K +
(
K
2

)
birooted subgraphs. To this end, we use the symmetric polynomials,

with exponent at most K, in the two variables and , corresponding to the normalized degrees
of the blocks corresponding to the two roots.

v =

 +

 v ◦ v⊤ =


+

+ + 2 + +

+

 (20)

In this example for K = 2, the second row of v has been symmetrized with respect to the two rooted
vertices, resulting in a formal linear combination of elements in the gluing algebra.
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As before, C is obtained by unrooting the entries, while for the construction of CB, we glue the
rooted subgraph corresponding to entries of B.

C =


2

2 2 + 2 2

2

 (21)

CB =


2

2 2 + 2 2

2

 (22)

Note that, once unrooted, isomorphic graphs are equivalent, e.g.: = =

As promised, the eigenvalues of CB(C )−1 are precisely the entries of B

eigval
(
CB(C )−1

)
=
{
Bkk′

}
k≤k′

(23)

Moreover, the structure of their corresponding eigenvectors allows us to select specific entries Bkk′

eigvec
(
CB(C )−1

)
=

{[
1

dk + dk′

dkdk′

]}
k≤k′

(24)

Thus, for each pair of blocks k and k′ with normalized degrees dk and dk′ , we can estimate their
connection probability Bkk′ , estimate the eigenvalue of its corresponding eigenvector:

Bkk′ =
v⊤(CB(C )−1)v

v⊤v
v =

[
1

dk + dk′

dkdk′

]

Remark 2 (Sufficiency of subgraph densities). Suppose we fix a finite number K of blocks, and
consider all SBMs with K blocks. The 2K − 1 subgraph densities defined by all stars with up to
2K − 1 edges then completely determines the degrees and sizes of blocks. Adding the subgraph
densities of all bistars with maximum degree at most K then completely determines the connection
probabilities between blocks (as a function of their degrees), and therefore the entire distribution
of the random graph. In other words, the vector of these densities of stars and bistars is a sufficient
statistic for the class of degree-separated stochastic block models with K blocks.

4.3 Beyond Degree Correlations: Adding “Two-Hop” Subgraphs

The method described above can be thought of as a “basic” minimum working example of a much
more general family of graph pencil methods. The subgraph densities in C and Cd are sensitive
only to the degree distribution, and the subgraphs in C and CB contain information about the
degree-degree correlations. While this is sufficient to recover the parameters of an SBM when the
normalized degrees of the blocks are well-separated, the method can be made more robust by adding
additional subgraphs.

In particular, define the “two-hop” matrix of connection probabilities Λ = B •πB, where •π denotes
the matrix product weighted by π, i.e.:

Λij =
∑
k

BikπkBkj (25)

These birooted subgraphs interact the others via gluing and unrooting (see table 3).
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Table 3: Incorporating the “two-hop” connection probability Λ into the gluing algebra.

glyph symbol meaning

B •πB = Λ two-hop connection probability
Λ ◦B entrywise multiplication
π •

(
Λ ◦B

)
• π = µ

( )
homomorphism density of triangles

We can use this to add more columns to C and CB:

C =


2 2

2 2 + 2 2 2 2 + 2 2

2 2

 (26)

CB =


2 2

2 2 + 2 2 2 2 + 2 2

2 2

 (27)

Remarkably, we can use these larger matrices in exactly the same way as before (using the Moore-
Penrose pseudoinverse). As shown in in figure 1, including these additional subgraphs can make the
recovery of the SBM more robust.
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Figure 1: Adding “two-hop” subgraphs helps recover (dis)assortativity.
We use 2-by-2 SBMs with varying degrees of assortativity to compare our basic method using bistars
from section 4.2 (green squares) and the method that adds the two-hop subgraphs from section 4.3
(purple circles). The vertical axis measures the expected squared error of the probability of an edge
between two random nodes, and shading denotes ±1 standard deviation from the average value. The
dashed orange line denotes the expected squared error if the latent blocks of the nodes were known,
and both methods appear to converge at this optimal rate. When the SBM is particularly assortative
(left) or disassortative (right), the inclusion of two-hop subgraphs results in a notable improvement.

5 From an Observed Graph to a Stochastic Block Model

In order to apply the graph pencil method to an observed graph, we need to obtain unbiased estimators
of the homomorphism densities used to construct the C matrices. In particular, for a subgraph g and
a (large) graph G, we want to compute the fraction of injective maps φ from V (g) to V (G), such
that if (u, v) ∈ E(g), then (φ(u), φ(v)) ∈ E(G).

5.1 Quickly Counting (Injective) Homomorphisms

We start with the adjacency matrix A, the identity matrix I, and the all-ones matrix 1. Then, we
perform our only difficult matrix multiplication:

∑
k AikAkj = Dij + Λij , where D is the diagonal
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matrix of node degrees, and Λ is the (traceless) “two-hop adjacency” matrix. From these, we can
recursively count all the relevant subgraphs using only entrywise multiplication.

We index our subgraphs with a tuple of non-negative integers (ℓ, c, r), corresponding to: the number
of edges incident to only the “left” node, the number of two-hop paths between the “left” and “right”
nodes, and the number of edges incident to only the “right” node j. First, we add the two-hop paths:

M(0,0,0) = 1− I (28)

M(0,c+1,0) = M(0,c,0) ◦
(
Λ− c1

)
(29)

Define the matrix of “left” degrees to be L = D •
(
1− I

)
−A (i.e., the degree of node i if node

j ̸= i were deleted, and zero when i = j), and the matrix of “right” degrees to be its transpose
R = L⊤. Next, we add single edges to node i, then to node j:

M(ℓ+1,c,0) = M(ℓ,c,0) ◦
(
L− (ℓ+ c)1

)
(30)

M(ℓ,c,r+1) = M(ℓ,c,r) ◦
(
R− (r + c)1

)
− ℓM(ℓ−1,c+1,r−1) (31)

Finally, if an edge connecting the left and right nodes is to be included, we put a mark on the middle
integer:

M(ℓ,c′,r) = M(ℓ,c,r) ◦A (32)

To obtain the counts of a subgraph g in the entire graph, simply sum the entries of the corresponding
matrix M(ℓ,c,r). This is analogous to the “unrooting” operation from before.

r
M(ℓ,c,r)

z
=
∑
i

∑
j

M(ℓ,c,r) (33)

For example, JAK is twice the number of edges, as the injective homomorphisms count both orienta-
tions. The injective homomorphism densities are obtained by dividing this count by the number of
injective maps

µ
(
g(ℓ,c,r)

)
=

q
M(ℓ,c,r)

y

N
(
N − 1

)
· · ·
(
N − |V (g)|+ 1

) (34)

6 Discussion

The map from a stochastic block model to the density of a given subgraph can be computed analytically
(e.g., [12]), or approximated by simulation (sample a graph from the model, count the number of
occurrences of the given subgraph, and normalize appropriately). In contrast, the map from the
subgraph densities to the stochastic block model is rather nontrivial. This paper provides a way to
compute this map.

Since asymptotic rates are known for subgraph densities (see, e.g., [5] and [3]), and the mapping
we construct here is differentiable in the interior of its domain, we should expect similar asymptotic
rates for recovery of the model parameters. We do not currently know how the rate behaves at the
boundaries. At the boundary, the method may in principle output invalid probabilities, as there is at
present no explicit constraint enforcing the connection probabilities to be between 0 and 1. Hence, as
many other methods for inferring SBMs, our method is well-behaved in the interior.

Finally, we note that the method presented here can be extended in a variety of ways, for example to
directed edges, weighted edges, directed weighted edges, etc.

Code

Code implementing our method is available at https://github.com/TheGravLab/TheGraphPencilMethod.
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A The Glyph Algebra

In this paper we use small glyphs as algebraic quantities. This appendix describes how to compute
these quantities from the SBM, and the how they relate to the operations used in the inference method.

A.1 Subgraph Densities

We are interested in the homomorphism density of a subgraph g in a distribution given by SBM(π,B).
Consider the probability that 5 randomly sampled nodes form the subgraph g shown below:

1 2

3

4 5

Let φ be a map from V (g) to [K] that assigns each node to one of the K blocks. Nodes are sampled
independently from the distribution π, so the probability of such a mapping is given by the product
of the corresponding entries of π:

1 2

3

4 5
πφ(1) πφ(2)

πφ(3)

πφ(4) πφ(5)

Given one such assignment φ, the probability of seeing the subgraph g is the product of the edges
probabilities, given by the corresponding entries of B:

1 2

3

4 5
πφ(1) πφ(2)

πφ(3)

πφ(4) πφ(5)

Bφ(1)φ(2)

B φ
(2
)φ

(3
)

B
φ
(3)φ

(4)

Bφ(2)φ(4) Bφ(4)φ(5)

To get the density of subgraph g, we sum over all K |V (g)| possible maps:

µ
(
g
)∣∣∣

SBM(π,B)︸ ︷︷ ︸
homomorphism density
µ of a subgraph g in an
SBM given by π and B

with K blocks

=

K|V (g)|∑
φ:V (g)→[K]︸ ︷︷ ︸

sum over all maps φ
from vertices in g to

the K blocks

[( ∏
i∈V (g)

πφ(i)

)
︸ ︷︷ ︸

probability of that
vertex assignment

×

( ∏
(i,j)∈E(g)

Bφ(i)φ(j)

)
︸ ︷︷ ︸

probability of the
corresponding edges

]
(35)
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A.2 Rooted Subgraph Densities

Consider the “Feynman diagram” for a single edge:

1 2
Bφ(1)φ(2)

πφ(1) πφ(2)

←→
∑

φ(1)∈[K]

∑
φ(2)∈[K]

πφ(1)Bφ(1)φ(2)πφ(2)

Summing over all node assignments results in a scalar, namely, the edge density of the entire SBM.
To represent quantities specific to individual blocks, we consider subgraphs with one of its vertices
designated as the “root”, which we represent as an open circle.

To compute these quantities, omit the
∑

and π associated with the rooted vertex:

1 2
Bφ(1)φ(2)

πφ(2)

←→
∑

φ(2)∈[K]

Bφ(1)φ(2)πφ(2)

As we are no longer summing over φ(1) ∈ [K], this computation results in a scalar for each of the
K possible assignments of φ(1). In other words, the result is a vector of length K (in this case, the
vector d of normalized degrees), indexed by the K blocks.

In general, the length-K vector associated to a rooted subgraph is given by:

µk

(
g; v
)∣∣∣

SBM(π,B)︸ ︷︷ ︸
homomorphism density
µ of a subgraph g with

rooted vertex v in block k

=

K|V (g)|−1∑
φ:V (g)→[K]
s.t. φ(v)=k︸ ︷︷ ︸

sum over all maps φ that
send vertex v to block k

[( ∏
i∈V (g)\v

πφ(i)

)
︸ ︷︷ ︸

probability of that assignment
of remaining vertices

×

( ∏
(i,j)∈E(g)

Bφ(i)φ(j)

)
︸ ︷︷ ︸

probability of the
corresponding edges

]
(36)

A.3 Pointwise Product ≡ Gluing Graphs

Instead of drawing out the large diagrams with labels, we represent the quantities associated with
rooted subgraph densities as small glyphs. For example, the vector of normalized degrees is:

←→ d

The graph pencil method uses an operation denoted by ◦, which indicates entrywise multiplication (or
Hadamard product). In the context of rooted subgraph densities, this is known as the gluing operation
[21], as it corresponds to “gluing” together rooted subgraphs by their roots. For example, we can take
powers of the vector of degree densities:

◦ = ←→ d ◦ d = d2

◦ = ←→ d ◦ d2 = d3

The fact that these expressions hold for the glyphs can be seen by factoring the sum over products in
equation (36). For example:

=
∑

φ(2)∈[K]

∑
φ(3)∈[K]

Bφ(1)φ(2)Bφ(1)φ(3)πφ(2)πφ(3)

=

( ∑
φ(2)∈[K]

Bφ(1)φ(2)πφ(2)

)( ∑
φ(3)∈[K]

Bφ(1)φ(3)πφ(3)

)
= ◦

A.4 Inner Product ≡ “Unrooting” Vertices

In section A.2, we saw that when a node is the root, we omit its corresponding
∑

and π in the
expression. In the same way, we can interpret the filling in (or “unrooting”) of a vertex as performing
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a weighted sum:

1
πφ(1)

←→
∑

φ(1)∈[K]

πφ(1)

Thus, given a vector corresponding to a rooted diagram, we can take the inner product, denoted by
•, with π. This corresponds to “unrooting” the rooted vertex, and the result is the corresponding
subgraph density for the SBM:

• = ←→ π • d3 =

K∑
k=1

πkd
3
k = µ

( )
A.5 Birooted Subgraph Densities

The procedure for birooted subgraphs is much the same as for singly-rooted subgraphs, except that
now there are two designated vertices for which we omit the

∑
and π. This results in a K-by-K

matrix, indexed by ordered pairs of the K blocks. The simplest example is the birooted edge:

1 2
Bφ(1)φ(2) ←→ Bφ(1)φ(2)

In this case, there is no sum over vertex assignments, and the only term in the product is Bφ(1)φ(2),
so this is simply the K-by-K matrix of connection probabilities:

←→ B

The gluing operation for birooted subgraphs is analogous to that for singly rooted subgraphs, cor-
responding to entrywise multiplication of K-by-K matrices. In glyph notation, each of the rooted
vertices in one subgraph is glued to the corresponding rooted vertex in the other. Unrooting the two
vertices requires two dot products with π.

B Simulation Details

Our graph pencil method can naturally be extended to use the “two-hop” subgraphs (section 4.3).
Figure 1 (reproduced below) shows how doing so can improve the accuracy of the method in some
cases (namely, those with notable (dis)assortativity):
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The three figures show the results for three 2-by-2 SBMs with moderate degree separation and varying
(dis)assortativity. As all three SBMs have equal-sized blocks π = (0.5, 0.5), the grayscaled 2-by-2
matrices displaying the connection probabilities B are suggestively accurate representations of typical
adjacency matrices.

From these SBMs, we sample graphs of different sizes (section 2), compute the necessary subgraph
densities (section 5), and infer the parameters π and B (section 4). The green squares represent the
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basic method using bistars (section 4.2), and the purple circles represent the method that adds the
two-hop subgraphs (section 4.3).

The y-axis measures the mean squared error of the inferred entries of B:

squared error = π⊤
true

(
Binfer −Btrue

)2
πtrue (37)

For each SBM, we simulated 16 graphs with 8192 nodes, 32 graphs with 4096 nodes, 64 graphs with
2048 nodes, and 128 graphs with 1024 nodes. Curves show the average squared error for these runs,
and shading denotes ±1 standard deviation, linearized so as to be symmetric on a log plot:(

mean, stdev
)
−→ log(mean)± stdev

mean
(38)

The dashed orange line represents the expected squared error if one were to know the latent block
assignments of the nodes:

Var
(
Bij

)
=


Bij

(
1−Bij

)
(nπi)(nπj)

i ̸= j

Bii

(
1−Bii

)
(nπi)

2/2 i = j

(39)

And the dashed line shows π⊤
trueVar

(
B
)
πtrue.

15


	Introduction
	Notation and Definitions
	Mapping Star Densities to Block Degrees
	Classical Coin Collecting
	Distilling the Degree Distribution

	From Bistar Densities to a Stochastic Block Model
	Gluing Graphs: An Algebra
	Extracting the Edge Expectations
	Beyond Degree Correlations: Adding ``Two-Hop'' Subgraphs

	From an Observed Graph to a Stochastic Block Model
	Quickly Counting (Injective) Homomorphisms

	Discussion
	The Glyph Algebra
	Subgraph Densities
	Rooted Subgraph Densities
	Pointwise Product  Gluing Graphs
	Inner Product  ``Unrooting'' Vertices
	Birooted Subgraph Densities

	Simulation Details

