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Organisms approximate Bayes' rule

Scarcity and chance are essential facts of life.
= Organisms need to effectively handle with uncertainty.
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Priors color our perception

»

s (Howe & Purves, 2004)
(Graham & Field, 2009)

..might there be similar “illusions” with respect to
our priors over the structure of tasks?

Hofstadter’s Law: It always takes longer than you expect,
even when you take into account Hofstadter's Law.
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Priors cannot be both exhaustive and efficient

Priors over the structure of tasks
are necessary for learning and generalization.
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Formulating a tractable problem:

from arbitrary tasks to navigation and social graphs
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1. MCMCP:
Experimental framework for obtaining priors over graphs

2. Introducing Graph Cumulants:
Principled Framework
for Quantifying the Structure of Priors over Graphs

3. The Structure of Human Priors over Navigation and Social Tasks
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MCMCP: Experimental framework
for obtaining priors over graphs



MCMCP: a Bayesian model of the “telephone game”

hypothesis hypothesis hypothesis

data data ---
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MCMCP: a Bayesian model of the “telephone game”

hypothesis hypothesis hypothesis

data data ---

(Kalish & Griffiths, 2007)
MC over hypotheses:

Ty = Zp(hm = i[diyr = X)p(diyr = x|h: =)

Under certain assumptions...
this process converges to people’s prior.
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A historical example

(~)

(Bartlett, 1932)
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Algorithm for MCMCP experiments over graphs

1. Initialize “task graph”
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Algorithm for MCMCP experiments over graphs

1. Initialize “task graph”

2. Randomly obscure s
pairwise relations

3. Show n'" subject ’

the remaining relations

4. Query n'" subject about
the obscured relations

5. Update task graph, and . .

n=n-+1

6. Repeat steps2 —5
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Standard MCMC “wastes” lots of data

Two main sources of inefficiency:

correlated samples

relevant quantity

iteration
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Estimating convergence is tricky

relevant quantity

ifé(ation

relevant quantity

more iterations
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Priors can be more accurately recovered

by fitting the MCMCP model to the aggregated data
5
3
3
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MCMCP: Experimental framework for obtaining priors over graphs

Standard MCMCP:
Observed graph frequency

0100 Our method:
' Fitted prior (multinomial)
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Parameterization and interpretation issues

1. How to parametrize distributions over graphs?

nodes: unique graphs:
3 4
4 1
5 34
6 156
7 1044
8 12346
9 274668
10 12005168
1 1018997864
12 165091172592
13 50502031367952
14 29054155657235488
15 31426485969804308768
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Parameterization and interpretation issues

1. How to parametrize distributions over graphs?
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Introducing Graph Cumulants:
Principled Framework

for Quantifying the Structure
of Priors over Graphs



The pluripotent language of graph theory

Biological Navigational

Recurring themes:

- sparsity
- power law degree distribution
- clustering

Introducing Graph Cumulants — General motivation
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A standardized hierarchy of network statistics

Network network null models often aim to
replicate these common properties, BUT:

- different models can replicate similar sets of these properties,
- and these properties are often intertwined.
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A standardized hierarchy of network statistics

Network network null models often aim to
replicate these common properties, BUT:

- different models can replicate similar sets of these properties,
- and these properties are often intertwined.

A standardized hierarchy of descriptive network statistics
and associated network null models is lacking.

Vector-valued random variables
enjoy such a description in terms of their cumulants.

We derived the analogue of cumulants for networks.
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A simpler, non-graphical example
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Graph Moments

When sampling multiple relations,
one must consider the graphical structure.

1%t order d order

3 order /\ //
ALTINY
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A natural hierarchical low-dimensional

parameterization of distribution over graphs

In the limited data regime, it allows for:

+ more accurate recovery
of the prior (in silico data)

KL divergance from true prior

Number of data points
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A natural hierarchical low-dimensional

parameterization of distribution over graphs

In the limited data regime, it allows for:

- more accurate recovery - better generalization
of the prior (in silico data) (in human data)
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Cumulants as a function of moments

w; = i*" order moment, x; = i** order cumulant

=) =) pa=(X),
mean: K, = ,

variance: k, = u, — ;. (07 = (X*) — (x)?)
skew: &, = py — 3p,p, + 243

4

kurtosis: &, = p, — Apspty — 3405 + 12,17 — 611
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Graph Cumulants

We exploit the combinatorial relationship
between moments and cumulants
to obtain graph cumulants.

_-_: Ba s =) =) i) =) o 3
H3n = K3n + KoaKq, T KopKq, + KoKy, + KY,

This framework provides a principled method
for quantifying the importance of substructures
in networks of different sizes or edge densities.
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A solution to the degeneracy problem

Many commonly used maximum entropy models of networks

yield to bimodal distributions,
even when fitting to a single network observation.
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A solution to the degeneracy problem

Many commonly used maximum entropy models of networks

yield to bimodal distributions,
even when fitting to a single network observation.

o

ERGM( 1y, 0)

(degenerate)

ERGMI( W, iy i)
(our solution)

Probability density
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Our hierarchical parameterization solves this problem.
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Our framework encompasses

networks with additional properties

Directed edges:

Bipartite networks:
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Summary of graph cumulants

- Constructed a hierarchy of summary statistics of networks
by considering correlations between
an increasing number of relations.

- Provides a principled hierarchical parameterization
of distributions over networks.

- Provides interpretable measures
of the propensity for arbitrary network substructures.

- Solves the “degeneracy problem”
of exponential random graph models.

- Naturally extends to networks with additional properties.
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The Structure of Human Priors
over Navigation and Social Tasks



Online experiments

Experimental cover stories:

- Social:
- Friendships in a classroom

- Friendships in a workplace
- Navigation:

- Trails in a nature park
- Neighborhoods in a city

Cover stories were over 4, 5, 6, 7, 8,10, 12, and 15 nodes.
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Priors favor sparsity
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A regime change in the preferred density of edges

4 nodes 5 nodes 6 nodes 7 nodes
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Priors favor more “egalitarian” configurations

2" order
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Priors over social interactions favor triangles
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Priors have non-trivial

domain-dependent graphical structure
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Priors have non-trivial

domain-dependent graphical structure

Increasing order
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Priors have non-trivial

domain-dependent graphical structure

Increasing order
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- Developed a framework for
quantifying priors over graphs

- Applied it to human priors
over social and navigational tasks

- Resulting priors have
nontrivial graphical structure

- Proposed a novel parameterization
of distributions over graphs
and associated summary statistics
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