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Abstract

Instrumental variables (IVs) are widely used
to estimate causal effects in the presence of
unobserved confounding between an exposure
X and outcome Y . An IV must affect Y
exclusively through X and be unconfounded
with Y . We present a framework for relax-
ing these assumptions with tuneable and in-
terpretable "budget constraints". Our algo-
rithm returns a feasible set of causal effects
that can be identified exactly given perfect
knowledge of observable covariance statistics.
This feasible set might contain disconnected
sets of possible solutions for the causal ef-
fect. We discuss conditions under which this
set is sharp, i.e., contains all and only effects
consistent with the background assumptions
and the joint distribution of observable vari-
ables. Our method applies to a wide class of
semiparametric models, and we demonstrate
how its ability to select specific subsets of
instruments confers an advantage over con-
vex relaxations in both linear and nonlinear
settings. We adapt our algorithm to form
confidence sets that are asymptotically valid
under a common statistical assumption from
the Mendelian randomization literature.

1 INTRODUCTION

The causal effect of a “treatment” (or “exposure”) X on
an “outcome” Y captures the change in the distribution
of Y when we intervene on X (Pearl, 2009). In a
randomized control trial, X is controlled explicitly so
that the causal effect can be identified (Neyman, 1923;
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Fisher, 1935). However, due to financial, ethical or
physical constraints, confounding factors affecting X
and Y often cannot be held fixed or observed and
adjusted for (Rubin, 1974; Holland, 1986). In these
situations, instrumental variables (IVs) are commonly
used to infer causal effects.

IVs are a set of pre-treatment covariates Z that are (A1)
associated with X; (A2) unconfounded with Y ; and
(A3) whose causal effect on Y is exclusively mediated
through X (Angrist et al., 1996; Heckman and Vytlacil,
1999) (see Sect. 2.1 for formal definition). Due to
the presence of latent confounders, one cannot test
whether (A2) and (A3) hold for any particular pre-
treatment covariate. However, with multiple candidate
instruments, a simple fact may be exploited: if different
sets of covariates predict different values of the causal
parameter θ when treated as IVs, then at most one of
the sets contains valid IVs.

Kang et al. (2016) exploit this fact by showing the fol-
lowing in linear models with a scalar treatment: if more
than 50% of the pre-treatment covariates are correctly
assumed to be valid IVs, then θ is point-identifiable
(i.e., given an infinite number of observations from the
model, the value of θ can be uniquely determined). A
number of majority rule based approaches to inference
with invalid IVs extend this work (Bowden et al., 2016a;
Hartwig et al., 2017; Bucur et al., 2020; Hartford et al.,
2021).

However, in settings where (a) 50% or fewer candidate
IVs are valid, or (b) more than one causal parameter
is needed (e.g., because the treatment is multidimen-
sional), we show that θ can be at best partially iden-
tified. For example, even with oracle access to the
joint distribution P (X,Y, Z1, Z2), it may be undecid-
able whether Z1 is a valid IV and Z2 is not or vice
versa. Though some values of θ may be excluded, the
parameter will not converge to a single value even in
the limit of infinite data.

Rather than assuming that all or a majority of Z are
valid IVs, our approach is to set a minimum propor-
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tion which are. In fact, we consider a more general
setting (c), in which “degrees” of IV validity are set by
user-input thresholds. It is not assumed a priori which
thresholds apply to which candidate IVs. For each
threshold, however, a user-input “budget” constrains
how many candidates are allowed to violate the IV
assumptions up to that degree. Bucur et al. (2020) and
Xue et al. (2023) propose point estimators for θ under
budget-like constraints, restraining fewer than 50% of
candidate IVs to be valid. As we will see in Sect. 2,
however, θ is only partially identified in this setting.
The allocation of budgets to Z are also partially iden-
tified in general, which can lead to disconnected sets
of solutions for θ.

Our discussion applies when IVs are invalid due to
violation of (A2), (A3) or both. We show that under
the assumption of homogeneous causal effects (Holland,
1986), which implies an additive separation of the X-
and Z-signals into Y (Newey and Powell, 2003), a la-
tent vector statistic summarizes bias in the estimated
θ due to violation of both assumptions. This statistic
has a simple interpretation: the residual covariance
between pre-treatment covariates Z and the outcome
Y not explained by the causal effect of the treatment
X. Vancak and Sjölander (2023) make a similar pro-
posal to quantify the violation of IV assumptions in a
single sensitivity parameter. However, their approach
is limited to a single scalar Z, so does not utilize the no-
tion of IV candidates and whether they give consistent
estimates of θ.

We provide an algorithm, budgetIV, that provably
finds sharp partial identification sets for causal effect
parameters under fixed budget constraints. We show
that the set can be inferred from relevant summary
statistics, which reduce to the familiar covariance pa-
rameters Cov(X,Z) and Cov(Y, Z) for linear models.
In the special case of scalar treatments, we provide
a polytime procedure for computing sharp solution
sets. However, under setting (b), we prove that partial
identification is NP-hard in the number of instruments,
budget thresholds and causal effect parameters. Fi-
nally, we provide a method for handling finite-sample
uncertainty. In Sect. 4, we show how budgetIV can be
adapted to form (asymptotically) valid confidence sets
under the so-called “no measurement error” assumption
from the Mendelian randomization literature (Bowden
et al., 2016b).

The remainder of this paper is structured as follows.
We formalize our problem in Sect. 2. We introduce
the budgetIV algorithm in Sect. 3 and propose related
inference procedures in Sect. 4. Experimental results
are presented in Sect. 5. Following a literature review
in Sect. 6, we conclude with a brief discussion in Sect. 7.
Proofs, pseudocode, and experimental details are given

causal effect
of interest

instrumental
effect

instrumental leakage

latent confounding

X YZ

ϵX ϵYϵZ

Figure 1: Acyclic directed mixed graph for our
problem setup. Solid circles represent observable vari-
ables and dashed circles latent variables. Bidirected
arrows are interpreted as any mutual dependence be-
tween noise residuals. The dotted black arrow indicates
the unobserved confounding between X and Y . The
relevance assumption (A1) requires at least one of the
blue arrows. The red arrows contribute to violations
of the exogeneity conditions (A2) and (A3). The green
arrow indicates the causal effect of interest.

in the appendix.

2 PROBLEM SETUP

Our observable variables include a set of candidate
instruments Z ∈ ΩZ ⊆ RdZ ; treatments X ∈ ΩX ⊆
RdX ; and a univariate outcome Y ∈ ΩY ⊆ R. We
assume that the ground truth structural equation model
(SEM) between these variables takes the following form:

Z := fz (ϵz) , (1)
X := fx (Z, ϵx) , (2)
Y := θ∗ ·Φ(X) + gy(Z, ϵy), (3)

where ϵz, ϵx, and ϵy are noise residuals that capture
any and all effects from latent variables, including
unobserved confounding. The additive separability of
X and Z in Y is guaranteed by assuming that the
treatment effect is homogeneous, i.e., P

(
y | do(x)

)
−

P
(
y | do(x0)

)
is independent of Z and unobserved

confounding between X and Y .

The function Φ : ΩX 7→ ΩΦ ⊆ RdΦ may provide
a basis-expansion of a nonlinear treatment effect or
a representation of a high-dimensional treatment X.
Though some authors have studied the underspecified
regime in which dΦ > dZ (Pfister and Peters, 2022;
Ailer et al., 2023), we restrict attention to the more
common case where dΦ ≤ dZ . This guarantees the
identification result of Thm. 1, first shown in linear
models by Koopmans (1949).
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The vector θ∗ ∈ RdΦ is the causal parameter of interest.
Together with Φ, it defines the average treatment effect:

ATE(x;x0) = θ∗ ·
(
Φ(x)−Φ(x0)

)
,

which represents the expected change in Y if we were to
replace the intervention do(X = x0) with do(X = x).

2.1 A Sensitivity Parameter for IV Violation

We call Z a set of valid IVs if they satisfy the following
properties:

(A1) Association: Z⊥̸⊥X,
(A2) Unconfoundedness: Z ⊥⊥ ϵy,
(A3) Exclusion: Z ⊥⊥Y | {X, ϵy}.

In several well-studied regimes (Koopmans, 1949; Im-
bens and Angrist, 1994; Newey and Powell, 2003; Heck-
man and Vytlacil, 2005; Saengkyongam et al., 2022),
the assumptions above allow for point identification of
the target parameter θ∗. For our SEM (Eqs. (1) to (3)),
we prove point identification under a stronger version of
(A1) and an assumption that combines aspects of (A2)
and (A3), despite being strictly weaker than either. To
show this, we introduce the following parameters:

γg := Cov
(
gy(Z, ϵy),Z

)
,

βΦ := Cov
(
Φ(X),Z

)
,

βy := Cov
(
Y,Z

)
.

By taking the covariance between each term in Eq. (3)
with Z, we see that target parameter θ∗ is related to
γg by γg = βy − θ∗ · βΦ. Thus, γg is the residual
covariance between Y and Z not explained by the
ground truth causal effect of X on Y . Notice that if
both (A2) and (A3) are satisfied, then γg = 0.

Given that dΦ ≤ dZ , the following constraints are
sufficient for identification:

(B1∗) Association (strong): rank(βΦ) = dΦ
and (βΦ)i ̸= 0 (∀Zi ∈ Z);
(B2∗) Exogeneity (strong): γg = 0,

where (βΦ)i := Cov (Φ(X), Zi) and “exogeneity” refers
to the conjunction of (A2) and (A3).
Theorem 1 (Identifiability). Assume Eqs. (1) to (3)
and claims (B1∗), (B2∗) hold for some dΦ ≤ dZ . As-
sume the existence of a ground truth joint distribution
P (X, Y,Z) with finite covariance parameters β∗

Φ,β
∗
y.

Then the causal parameter θ∗ can be identified exactly
as the unique solution to β∗

y − θ∗ · β∗
Φ = 0.

We can relax (B1∗) and (B2∗) further, in particular
using γg to model violations of exogeneity:

(B1) Association (relaxed): βΦ ̸= 0;
(B2) Exogeneity (relaxed): γg ∈ Γ.

Such a relaxation may still allow for partial identifi-
cation, which we will see in the following section. In
Sect. 2.3 we introduce budget constraints as tuneable
and interpretable choices for Γ.

2.2 Formalizing Optimal Partial Identification

We say that the causal parameter θ∗ is partially iden-
tified when more than one (but not all) of its possible
values are consistent with the data and our structural
assumptions. In this section, we define a certain notion
of optimality for general partial identification problems,
and establish the ingredients for an optimal solution
in our setting.

The following definitions allow us to state and prove
these results. Let M be a class of SEMs and m∗ ∈M
the ground truth model. Each m ∈M implies a joint
distribution Pm(V ) over the observables V ∈ ΩV . (In
our setting V = {X, Y,Z} and ΩV = ΩX ×ΩY ×ΩZ .)

A constraint c :M 7→ {0, 1} is a logical formula that
either does or does not hold for any given model. For
instance, c may bound the range of some parameter(s)
in m or impose conditional independence on certain
variables in V . Let C be a set of such constraints, with
C∗ := {c ∈ C : c(m∗) = 1} denoting ground truth.
(In our setting, C includes the relaxed association and
exogeneity assumptions (B1) and (B2).)

An observable statistic s is a functional of the joint
distribution, s : {Pm(V ) : m ∈M} 7→ Ωs, with ground
truth value s∗ := s (Pm∗(V )). Examples include (con-
ditional) moments or correlations between variables.
(In our setting, s comprises the cross-covariance param-
eters βy,βΦ.) The target parameter q∗ := q(m∗) is
the ground truth for some latent statistic q :M 7→ Ωq,
which cannot be determined by Pm(V ) alone. (In our
setting, q∗ is the causal parameter θ∗.)

Given a constraint c ∈ C and statistic s, the “plausible”
values of q∗ form a solution set T (c, s) ⊆ Ωq. Such sets
are the image of a solution map for q, T : C × Ωs 7→
P(Ωq), where P denotes the power set.

We define an optimal solution map in terms of sound-
ness, completeness, and minimality criteria. We defer
discussion of computational complexity and finite sam-
ple inference to Sect. 3 and 4, respectively.

Definition 1 (Soundness). A solution map T is
sound if, for any ground truth model m∗ ∈M, given
statistic s∗ := s (Pm∗(V )) and constraint c∗ ∈ C∗, we
have q∗ ∈ T (c∗, s∗).

This condition ensures that our solution map cannot
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exclude the target q∗ when provided with ground truth
inputs.
Definition 2 (Completeness). A solution map T
is complete if, for any ground truth model m∗ ∈ M,
given s∗ and any c∗ ∈ C∗, the following holds. For all
q ∈ T (c∗, s∗), there is at least one model mq ∈M for
which q = q(mq) and s

(
Pmq

(V )
)
= s∗.

This condition ensures that no sound map can exclude
more values of q ∈ Ωq\{q∗}. Solution sets that are both
sound and complete are said to be sharp, as originally
defined by Manski (1990, 2003).

For the next definition, we introduce a partial order on
observable statistics with respect to their information
content. We say that s′ is at least as informative as s if
there exists a deterministic function f : Ωs′ 7→ Ωs such
that, for any m ∈M, s (Pm(V )) = f (s′ (Pm(V ))). In
this case, we write s′ ⪯ s.
Definition 3 (Minimality). A sharp solution map
T : C × Ωs 7→ Ωq is minimal if, for any other sharp
solution map T ′ : C × Ωs′ 7→ Ωq that takes a different
input statistic s′, we have s′ ⪯ s.

Minimality ensures that no sharp map could be con-
structed using strictly less information. With Defs. 1
to 3 in place, we can show the existence of an optimal
solution map for our problem.
Theorem 2 (Optimal solution map). Let the model
class M consist of all SEMs consistent with Eqs. (1)
to (3) for some given Φ and dΦ ≤ dZ . Assume the ex-
istence of a ground truth joint distribution P (X, Y,Z)
with finite covariance parameters β∗

Φ,β
∗
y. Define the

affine function h(θ) := βy − θ · βΦ, for some βy, βΦ.
Then the solution map T defined by:

T (c, s = (βΦ,βy)) = {θ ∈ RdΦ : h(θ) ∈ Γ}, (4)

is sound, complete, and minimal with respect to back-
ground constraint set C = {I[γg ∈ Γ] : Γ ⊆ RdZ},
where I[·] denotes the indicator function.

In Appx. B.1 we examine how extra assumptions can
result in smaller solution sets. In particular, we show
that this is the case for models with categorical (Balke
and Pearl, 1997) or bounded (Manski, 1990) outcomes.

2.3 Budget Background Constraints

We introduce sensible choices for the search space Γ.
For any γg ∈ RdZ and any α ∈ [0, 1), if γ′

g := αγg ,
the degree of IV violation attributed to each candidate
and the combined violation is strictly weaker for γ′

g

than for γg . Below, we formalize the notion that if γg

is plausible, then so too is γ′
g .

Definition 4 (Star domain). A set of points A ⊆ Rd

is a star domain if there exists a point a ∈ A such

that the line between a and any other point a′ ∈ A is
contained within A. Equivalently, a star domain is a
space A ⊆ Rd with a nonempty convex kernel:

ck(A) := {a ∈ A | ∀a′ ∈ A, η ∈ [0, 1] :

ηa+ (1− η)a′ ∈ A}.

Principle 1 (Starfish principle). Relax a structural
assumption by adding a latent sensitivity parameter,
δ, whose direction is related to the mechanisms of vio-
lation and whose magnitude increases with the degree
of violation by these mechanisms. Bound the support
of this parameter within a star domain for the FeasIble
SearcH space—i.e., a starFISH—whose convex kernel
includes the point δ = 0.

This principle encapsulates current literature restrict-
ing the number1 (Kang et al., 2016; Hartwig et al., 2017;
Silva and Shimizu, 2017; Hartford et al., 2021) or total
effect (Ramsahai, 2012; Conley et al., 2012; Silva and
Evans, 2016; Watson et al., 2024; Jiang and Kocaoglu,
2024) of invalid instruments. Convex restrictions lead
to convex identified sets when the sensitivity parameter
is an affine function of the causal effect parameters. If
this affine function intersects the convex kernel, the
intersection is connected (by definition). In the general
case, the identified set for the quantities of interest
may be disconnected (see Fig. 2). However, each dis-
joint subset might also provide a distinct mechanistic
interpretation for the plausible violations.

Here, we introduce budget constraints, which are based
on two user-specified components: thresholds, τ :=
(τ1, τ2, . . . , τK), which describe degrees of IV invalidity;
and budgets, b := (b1, b2, . . . , bK), which determine the
minimum number of IVs assumed to be at least as valid
as the corresponding threshold. The thresholds must
be nonnegative and increasing: 0 ≤ τ1 < τ2 < . . . <
τK < ∞. Integer budgets are increasing and strictly
positive: 0 < b1 < b2 < · · · < bK ≤ dZ . Thresholds
and budgets with the same index i ∈ [K] form pairs.
The number of thresholds–budget pairs K is chosen by
the user but we require K ≤ dZ .

We define the dZ-dimensional latent statistic U(γg)
through the following relationship:

Ui = ℓ⇐⇒ τℓ−1 ≤ |γgi | ≤ τℓ.

Let Ui1, Ui2, . . . , UiK represent the encoding of Ui such
that Uiℓ = I[Ui ≤ ℓ] for all ℓ ∈ [K], where I[·] is the
indicator function. We define the budget constraint
restriction Γ(τ , b) as the set of vectors γg satisfying, for
all ℓ ∈ [K],

∑dZ

i=1 Uiℓ ≥ bℓ for some choice of budgets
and thresholds. We denote the set of U with encodings

1Notice that the L0 norm constraint ∥h(θ)∥0 ≤ b is a
star domain with a convex kernel including the point θ = 0.
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γg2

γg1
Γ
convex

affine subspace h(θ)

θ

convex feasible sets

γg2

γg1
Γ
domainstar

θ

u n i d e n t i f i a b l e

discon ected

Figure 2: The topology of a feasible set depends on the shape of the background constraints.
Plots of constrained search spaces Γ (shaded) and lines h(θ) corresponding to dZ = 2, dΦ = 1. The intersection
between a line and shaded region determines a feasible set of θ. The constraints are a subspace of RdZ while h(θ)
are dΦ-dimensional affine subspaces. (Left) Convex Γ entails convex feasible sets. (Right) Budget constraints
Γ(τ , b) form a star domain. They are non-convex in general and are unbounded for bK < dZ (i.e., some γgi may
be unconstrained). This can lead to disconnected or even unidentifiable causal effect. In Appx. B.2 we show that
unidenfitiability occurs only under violation of (B1∗) and can be tested in polytime.

satisfying the inequality above by Σb. In particular,
if equality holds, we say U ∈ Σ

(max)
b is a maximally

relaxed assignment. These definitions will be useful in
the next section.

Since U(γg) depends on θ∗ it is only partially identifi-
able in general. We define the set of plausible budget
assignments:

{U(h(θ)) : θ ∈ RdZ , h(θ) ∈ Γ(b, τ )}.

For instance, if K = 1 and τ1 = 0, we assume at least
b1 candidate IVs are valid (having γgi = 0), but allow
dZ − b1 to be unrestricted. This extends the L0-norm
constraint from Kang et al. (2016) to violation of (A2)
and/or (A3).

3 THE ALGORITHM

The objective of budgetIV is twofold: (O1) discover
plausible budget assignments; and (O2) partially iden-
tify the ATE. We simplify (O1), which for general
dZ > dΦ > 1 allows the solution set for θ to be calcu-
lated using subset selection over Σ(max)

b . We conjecture
that subset selection cannot be avoided, which means
finding any θ in the solution set is NP-hard (w.r.t.
dZ and dΦ), while finding the entire solution set is
#P-hard. As it stands, budgetIV should not be run
for dZ , dΦ > 10. When dΦ = 1, however, we show
the solution set can be found in polynomial time us-
ing our algorithm budgetIV_scalar. Pseudocode for
both algorithms is given in Appx. C; executable code
is available online.2

Simplifying (O1) for dΦ > 1. Since U(γ) is
uniquely defined for each γ ∈ RdZ , the feasible re-
gion Γ(τ , b) decomposes into subsets ΓU for which

2https://github.com/jpenn2023/budgetIVr.

γ ∈ ΓU =⇒ U(γ) = U . However, in Appx. E, we
show that Γ(τ , b) can also be thought of as a union of
overlapping cuboids. Indeed, in Fig. 2 we see a feasible
region made up of two overlapping rectangles. Each
cuboid Γ̃Ũ is indexed by a maximal budget assignment
Ũ ∈ Σ

(max)
b .

3.1 budgetIV with Oracle β Parameters

We summarize the budgetIV algorithm below.

(1) For each Ũ ∈ Σ(max), test for the intersection
between h(θ) = βy − θ · βΦ and Γ̃Ũ .

(2) If there is an intersection, solve the following linear
program to find the bounds on ATE(x;x0) for each
x ∈ ΩX of interest and baseline treatment x0:

min/max
θ: h(θ)∈Γ̃Ũ

θ ·
(
Φ(x)−Φ(x0)

)
.

(3) Let θ−/+(x) denote the argmin/argmax solution
(respectively) to the optimization problem in step (2)
at point x. The function Ui(h(θ)) returns the value of
the latent variable Ui at the point h(θ). Compute Ǔ ,
defined by its components:

Ǔi := max
x∈ΩX

max
⋄∈{−,+}

Ui

(
θ⋄(x)

)
.

(4) Return all unique Ǔ (O2) along with the corre-
sponding ATE bounds (O1).

Polytime budgetIV_scalar. The algorithm above
describes an ILP that requires a linear search over
|Σ(max)

b |, which itself is bounded above by ddZ

Z , corre-
sponding to the case where K = dZ . Though standard
solvers are highly optimized, this task can quickly be-
come intractable with many candidate instruments.

https://github.com/jpenn2023/budgetIVr
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When dΦ = 1, however, exact partial identification of
the ATE can be computed in Õ(dZK) time. This is
done by noticing that the value of U associated with
h(θ) can only change as a function of θ at the 2dZK
points:

Θ±
ik :=

±τk − (βy)i
(βΦ)i

,

where we ignore any i for which (βΦ)i = 0. Similarly,
the full set of plausible budget assignments can be
calculated in polynomial time. See Appx. C for further
details.

3.2 The L0-norm Constraint

Kang et al. (2016) show that point identification is
possible in the linear setting with univariate exposure
X and some invalid instruments—provided at least
half are valid. We show that this result cannot be
generalized to multidimensional exposures. However,
we place tight bounds on the cardinality of the feasible
set with respect to the minimum number of valid IVs
b. We use the following shorthand:

TL0
(b) := T (c = I [γg ∈ Γ(0, b)] , s = {βΦ,βy}) .

Theorem 3 (t-point identification). Assume Eqs.
1, 2, 3 and claims (B1∗), (B2) hold for some Γ(0, b).
Then, for all b < dZ − dΦ + 1, the cardinality of the
feasible set t := |TL0(b)| ∈ N is bounded above by:

t ≤ dZ !

(dΦ − 1)!(dZ − dΦ + 1)!

⌊
dZ − dΦ + 1

dZ − b− dΦ + 1

⌋
.

This bound is tight in the sense that equality holds
for some values of βΦ, βy. We extend these results to
incorporate violation of (B1∗) in the proof (Appx. A.3).
Corollary 3.1 (No point identification for dΦ > 1).
There is no value of b for which t ≤ 1 is guaranteed for
all |TL0

| when dΦ > 1.
Corollary 3.2 (t-point identification for dΦ = 1).
In the case of dΦ = 1, we have:

|TL0
(b)| =: t ≤

⌊
dZ

dZ − b

⌋
≤ dZ .

This reduces to point identifiability when b < dZ/2.

4 INFERENCE

In this section we consider finite-sample uncertainty.
We seek confidence sets with (asymptotically) valid
coverage over the solution set {θ ∈ RdZ : h(θ) ∈
Γ(τ , b)}.

Since T is a deterministic map, it is possible to use a
confidence set (BΦ,By) over the covariance parameters

βΦ, βy. The confidence set over the causal parameter
is then all θ ∈ RdΦ satisfying:

∀(βΦ,βy) ∈ (BΦ,By) : (βy − θ · βΦ) ∈ Γ(τ , b).

Provided the estimators β̂Φ, β̂y have finite variance, an
asymptotically valid confidence set can be constructed
by modeling these estimators as multivariate normal
(see Appx. A.4). However, we choose to make the
following simplifications taken from the applied IV
literature.

4.1 Coverage with Summary Statistics under
the NOME Assumption

Candidate IVs are often selected from a pool of co-
variates, with inclusion based solely on marginal as-
sociation with the exposure. For instance, Mendelian
randomization (MR) is a popular approach in genetic
epidemiology whereby genetic variants Z are used as
IVs to determine the causal effect of phenotype(s) X
on a health outcome Y . The Z →X link is usually es-
tablished by a genome-wide association study (GWAS).
Empirically, the chosen Z tend to be less strongly asso-
ciated with Y than with X. This can occur for various
reasons: strong latent confounding between X and Y ;
a weak causal effect of X on Y ; low variation in Y
(e.g., rare diseases); and/or smaller sample sizes for
evaluating P (Z, Y ) than P (Z,X) (Pierce and Burgess,
2013).

In such cases, finite-sample error in θ̂ is mostly ex-
plained by finite-sample error in β̂y. This has led to
the introduction of a no measurement error (NOME)
assumption in MR studies (Bowden et al., 2016b, 2018),
under which one assumes finite sample error is only due
to error in β̂y. For complex choices of Φ, it may also be
the case that p-values for testing (β̂Φ)ij = 0 are lower
than those for testing (β̂y)i = 0, which would justify
the NOME assumption. We have adapted budgetIV
to construct confidence sets for θ with (asymptoti-
cally) valid probabilities to cover the entire solution
set {θ ∈ RdΦ : h(θ) ∈ Γ(τ , b)} under the NOME
assumption.

In particular, we use a Bonferroni adjustment to con-
struct a box-shaped confidence set over βy. For a
target coverage (1− α)× 100%, we take a union over
(1− α/dZ)× 100% confidence intervals corresponding
to each (βy)j . Let (δβy)i denote the half width of the
confidence interval over (βy)i. While box-shaped confi-
dence sets are conservative, they neatly superimpose
with the τ -thresholds:∣∣∣(β̂y)i ± (δβy)i − (θ · β̂Φ)i

∣∣∣ ≤ τ

⇐⇒
∣∣∣(β̂y)i − (θ · β̂Φ)i

∣∣∣ ≤ τ + (δβy)i.
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Figure 3: Our method yields sharper bounds than
convex relaxations in linear models. Bounds on
θ for a series of linear models with scalar exposure
X and γ∗

g = (−2,−0.4). Plug-in estimators are used
throughout. Orange bounds come from budgetIV with
τ = (0.6, τ); dark blue from the L1-norm constraint
∥γg∥1 ≤ τ + 0.6; and light blue from the L2-norm
constraint ∥γg∥2 ≤

√
τ2 + 0.62. We vary τ linearly

from 0 to 10—each bound is an experiment.

We use this relationship to, we add slack (±δβy)i to the
corresponding face of each Γ̃Ũ for Ũ ∈ Σ(max) to form
Γ̂Ũ , and optimize over these domains to construct cor-
responding confidence intervals for the ATE(x;x0) (see
Sect. 3.1). Our approach has the following guarantee.

Theorem 4 (Coverage). Fix the target level α ∈
(0, 1). Let Γ̂α :=

⋃
Ũ∈Σ(max) Γ̂Ũ be formed from the

(1− α/dZ)× 100% confidence intervals for each com-
ponent of β̂y as described above, where the intervals
are estimated from a dataset of n samples drawn iid
from P (X, Y,Z). Using the shorthand:

T̂α := T
(
c = I[γg ∈ Γ̂α], s = (β∗

Φ, β̂y)
)
,

we have, as n→∞:

P
(
θ∗ ∈ T̂α

)
≥ 1− α.

5 EXPERIMENTS

The full simulation studies are detailed in Appx. D,
along with additional results.

Sharper than convex relaxations. In Fig. 3 we
study the effect of varying the thresholds τ on the
feasible set. We consider a linear Gaussian model with
dX = 1 and dZ = 2 where (A2) is violated through
correlation between Z and ϵy, while (A3) is satisfied.
We fix the ground truth parameters θ∗ = 1, γ∗

g =
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Different choices of
plausible budget assignments U
offer different plausible ATEs

Figure 4: Budget constraints provide informa-
tion about the structure of the problem. Feasible
values of the ATE relative to a baseline of x0 = 0 as
exposure X varies in a nonlinear SEM with dZ = 6.
The true ATE is given by the solid black curve. Each
colored region corresponds to a unique intersection of
γg and the star domain Γ. The union of such inter-
sections at each value of X produces a disconnected
feasible set.

(−2, 0.4) and β∗
Φ = (2,−4). The remaining parameters

are randomized while Γ(τ, b = 1) is varied.

The results illustrate that if the degree of validity for
some instruments can be bounded, budgetIV may be
insensitive to weak constraints on other instruments.
By contrast, when used for partial identification, the
convex relaxations suffer from these bottlenecks of lim-
ited background knowledge, and the ATE bounds grow
linearly as a result.

Budget constraints highlight possible mecha-
nisms. Fig. 4 shows bounds on the ATE for feasible
values of U with a quadratic ground truth Φ∗(X) under
the presence of (A2) and (A3) violations. We study a
collection of violations in Appx. D.

Feasible sets returned by budgetIV represent a union of
convex bounds, each of which corresponds to a unique
causal hypothesis that cannot be determined by the
data or budget constraints alone (see Fig. 4). This dras-
tically reduces the search space of possible causal mech-
anisms for the IV candidates. If one or more of these
solutions can be ruled out by expert knowledge—e.g.,
if a monotonicity assumption is justified (Angrist et al.,
1996)—then the method can be rerun with added con-
straints, pruning the search space still further. In this
way, budgetIV can help practitioners evaluate causal
systems in a dynamic and principled manner, aiding
in hypothesis generation and experimental design.

In Fig. 4 the ground truth corresponds to the only
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MBE [1.857, 1.911] ✗
IVW [1.688, 1.839] ✗
MASSIVE [1.536, 1.552] ✗
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Figure 5: budgetIV captures the true causal ef-
fect when most candidates are invalid IVs. Re-
sults from a simulation study with dZ = 100 can-
didate IVs, 70 of which violate (A3), benchmarking
(Black) 95% coverage of the feasible set according
budgetIV_scalar, where the budget constraints Γ(τ =
0, b) are varied along the x-axis. (Blue) The optimal
solution set relative to the constraint Γ(τ = 0.001, b)
(for visibility) captures the true causal effect if and only
if the choice of b doesn’t exclude the ground truth γ∗

g .
(Others) Confidence intervals for benchmark methods
produce do not include θ∗.

plausible ATE with positive convexity. With additional
expert knowledge, one might infer that Z1, Z2, and Z3

are the true set of valid instruments.

Consistent inference under relaxed assumptions.
Fig. 5 shows a benchmarking experiment with dZ = 100
candidate IVs, 30 of which are valid and the remaining
70 violate (A3). The data is simulated via a linear
with a scalar exposure X and multivariate Gaussian
(ϵx, ϵy,Z := ϵz). Linearity, (A3) violation, scalar X
and Gaussian exogenous variables reflect the modeling
assumptions in the benchmarking methods. We apply
budgetIV_scalar for computational efficiency.

We apply a series of budget constraints Γ(τ = 0, b)

where b takes each value from 1 to 100 (b = 0 corre-
sponds to no constraint). We calculate δβy from a
95% confidence set using 100, 000 samples, which is a
typical GWAS sample size.

The resulting confidence sets decompose into three
kinds: (dZ − b < 56) empty, falsifying the budget
constraints; (56 ≤ dZ−b < 67) nonempty but excluding
θ∗; and (dZ − b ≥ 67) containing θ∗. Whenever b∗ < b
(so that γ∗

g ∈ Γ(0, b)) our confidence set captures θ∗.
Similarly, the solution set, calculated using β∗

y and β∗
Φ,

is shown to contain θ∗ if and only if b < b∗.

The methods we benchmark against give biased re-
sults. Inverse variance weighting (IVW) is a classi-
cal method that relies on all candidates being valid
IVs. MR-median (Bowden et al., 2016a) assumes
median(γ∗

gi)i∈[dZ ] = 0. MR-Egger assumes candidates
are invalid through independent mechanisms (e.g., not
affecting Y via shared mediators or being confounded
with Y via shared confounders). These assumptions do
not hold in our simulation study so we expect the re-
sults to be biased. Intriguingly, the stated assumptions
for the Bayesian approach MASSIVE (Bucur et al.,
2020) and the mode based estimate MBE (Hartwig
et al., 2017) hold in our experiment.

The MASSIVE estimator assumes an L0-norm con-
straint Γ(τ = 0, b) with a tuneable value of b, which
we set to b∗. We have shown θ∗ is only partially
identified under such constraints. MASSIVE applies
Bayesian model averaging over plausible sets of valid
IVs. The resulting posterior distribution sits be-
tween the two disjoint confidence intervals returned
by budgetIV_scalar, which themselves correspond to
different sets of valid IVs.

MBE assumes mode(γ∗
gi)i∈[dZ ] = 0. Fig. 5 shows that

this assumption holds because the optimal solution set
peaks at θ = θ∗ := 1. They estimate the corresponding
modal causal effect θ using the summary statistics β̂y,
β̂Φ, standard errors and the bandwidth selection rule of
Bickel and Levina (2008). Performing statistical infer-
ence on an estimator of the mode is not straightforward
(Genovese et al., 2015). Hartwig et al. (2017) base their
confidence intervals a normal approximation bootstrap.
However, mode estimators generally do not converge
to a normal distribution, which may explain the un-
derestimated uncertainty. Indeed Fig. 7 in Appx. D.3
shows an expanded grid of experiments under which
the estimates from MBE are highly variable.

6 RELATED WORK

There is a substantial literature on partial identifica-
tion for IV models with restricted outcome domains.
Early work includes seminal papers by Manski (1990)
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and Balke and Pearl (1997). Later work considered
bounded violations of the IV assumptions (Ramsahai,
2012; Silva and Evans, 2016; Jiang and Kocaoglu, 2024).
Others have proposed generic methods for bounding
counterfactual probabilities in discrete settings—either
via polynomial programs (Duarte et al., 2023; Michael
C. Sachs and Gabriel, 2023) or Markov chain Monte
Carlo (Zhang et al., 2022)—with applications to IV
models.

In the continuous setting, partial identification for
pseudo-IV models has typically been formulated with
respect to some convex relaxation of either (A2) or
(A3), in both linear (Conley et al., 2012; Watson et al.,
2024) and nonlinear SEMs (Newey and Powell, 2003;
Gunsilius, 2019). In recent years, several authors have
described more generic solutions based on stochastic
gradient descent (Kilbertus et al., 2020; Hu et al., 2021;
Padh et al., 2023). Unlike the linear programming ap-
proach of budgetIV, these methods are not guaranteed
to converge on global optima.

In the MR literature, various methods are designed to
try to handle linkage disequilibrium and/or pleiotropy.
One strategy is to include a large number of candi-
date instruments and assume that biases will tend to
cancel out in the limit (Kolesár et al., 2015; Bowden
et al., 2015). Others take a feature selection approach
in which Z’s may be rejected on the basis of statis-
tical tests (Chu et al., 2001; Kang et al., 2020) or
L1-penalized regression (Kang et al., 2016; Guo et al.,
2018; Windmeijer et al., 2019; Xue et al., 2023). Al-
ternatively, instruments may be pooled into a single
feature (Kuang et al., 2020). An especially popular
choice is the modal validity assumption (Hartwig et al.,
2017; Hartford et al., 2021), which asserts that the
most common causal effect estimate is consistent. The
goal in these works is point identification, which may
be unrealistic if underlying assumptions fail.

Bayesian methods for causal inference in IV models
are well-established. Priors can be used to encode
uncertainty with regard to latent parameters that track
either (A2) (Shapland et al., 2019) or (A3) violations
(Bucur et al., 2020; Gkatzionis et al., 2021).

In recent work, Vancak and Sjölander (2023) define a
single sensitivity parameter for violation of (A2) and/or
(A3). We extend this approach by using a latent statis-
tic of a nonparametric function. Star-domain restric-
tions for partial identification have also been proposed
(Molinari, 2008), though not as a guiding principle.

For a summary of the constraints and affordances of
various relaxed IV methods, see Appx. F, Table 1.

7 DISCUSSION

The budgetIV optimization problem is NP-hard for
any dΦ > 1. Therefore, with multivariate Φ, the
method becomes impractical for large dZ . Approximate
solutions that rely on grid search may be preferable in
such cases. Many MR studies are built on just one or
a handful or genetic variants, so a cap on dZ may not
be overly restrictive in such settings.

The additive separability of causal effects in pseudo-IV
models has been assumed by various authors (Newey
and Powell, 2003; Saengkyongam et al., 2022; Chris-
tiansen et al., 2021). We have considered the special
case of a homogeneous treatment effect, though our
method can be further generalized if Φ is promoted to
known functions of X, Z and/or ϵz. Extending our
approach to compute feasible sets of conditional aver-
age treatment effects may result in more informative
outputs (Cai et al., 2007; Hartford et al., 2021; Levis
et al., 2023).

We rely on the assumption dΦ ≤ dZ and assume our
choice of Φ is sufficient to describe the ground truth
causal effect of X on Y exactly. Future work could
could investigate error arising from misspecification
of Φ or incorporate thresholds on this kind of error
into the background assumptions. In particular, basis
expansions that have been truncated to satisfy the
bound on dΦ may be of interest.

While we have presented our method as inferring the
ATE from the distribution of instrument validity, the
correspondence can be thought of as bidirectional. One
promising direction for future work is to invert such
methods for the purpose of instrument discovery (Silva
and Shimizu, 2017). Another direction could be to use
background knowledge about the functional form of
the ATE (when dΦ > 1) to restrict the solution set.

There are several other extensions to budgetIV that
could be of interest. Sharper partial identification may
be achieved in models with restricted outcome domains.
The finite-sample properties of our method might also
be improved. We used a Bonferroni correction to con-
struct the confidence set over βy. Since this is conserva-
tive, a future direction may involve adaptively selecting
the confidence thresholds for each (βy)i to minimize
the width of the bounds on the ATE. On the other
hand, coverage under finite sample uncertainty without
the NOME assumption remains an open problem.
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A PROOFS

A.1 Proof of Thm. 1

This is a special case of a standard result from the classical IV literature, which goes back to Koopmans (1949):
θ has a unique solution under the assumptions (B1∗) and (B2∗) because βy − θ · βΦ = 0 is a complete system of
simultaneous equations. With finite samples, it is common to estimate θ solving this equation via two-stage least
squares (2SLS) or (for dΦ = 1) inverse variance weighting (IVW). The 2SLS estimator is given by:

θ(2SLS) := (βΦ · Σ−1
ZZ · β

⊤
Φ)

−1 · βΦ · Σ−1
ZZ · βy,

where ΣZZ denotes the dZ × dZ covariance matrix between the instruments. For details, see Wright (1928);
Bowden and Turkington (1984); Angrist and Pischke (2009).

A.2 Proof of Thm. 2

Let the structural Eqs. (1) to (3) hold for some ground truth functions f∗
z , f∗

x, Φ∗, g∗y , and causal parameter
θ∗ ∈ RdΦ .

Soundness We prove soundness of the feasible map T for which:

T (c = I[γg ∈ Γ], s = (βΦ,βy)) = {θ ∈ RdΦ : h(θ) ∈ Γ},

where h(θ) = βy − θ · βΦ. For ease of notation, we use the shorthand T (Γ,βΦ,βy) hereinafter.

It follows immediately from Eq. (3) and the left-linearity of the covariance operator that:

γ∗
g := Cov(gy(Z, ϵy),Z) = Cov(Y,Z)− Cov(θ∗ ·Φ(X),Z)

= β∗
y − θ∗ · β∗

Φ.

Therefore, θ∗ ∈ T (Γ,β∗
Φ,β

∗
y) whenever γ∗

g = (β∗
y − θ∗ · β∗

Φ) ∈ Γ as required.

Completeness To prove completeness of T we have to show that any θ ∈ T (Γ,βΦ,βy) cannot be rejected by
any statistic of the observed joint distribution P (Z,X, Y ). Notice that in specifying Eqs. (1) to (3), we have not
made any a priori assumptions about the joint distribution Pϵ(ϵz, ϵx, ϵy) or the function classes to which f∗

z , f∗
x,

g∗y belong. In Appx. B.1 we extend this proof to find conditions under which T remains complete when further
structural assumptions are made.

Consider any θ† ∈ RdΦ . Then the following holds:

(Z) There exists at least one function f†
z with the following property. Given any z ∈ ΩZ , either: (i) P (x, y, z) = 0

for all x ∈ ΩX and y ∈ ΩY ; or (ii) there exists at least one value ϵ†z that solves the equation:

f†
z(ϵ

†
z) = z.

Note that the ground truth f∗
z is one valid choice of f†

z.

We can, therefore, define a function ϵ†z(z) that satisfies the above equation for all z for which case (i) is false. We
have not demanded either f†

z or ϵ†z(z) to be unique.

(X) Likewise, there exists at least one function f†
x with the following property. Given any x ∈ ΩX , z ∈ ΩZ , either:

(i) P (x, y,z) = 0 for all y ∈ ΩY , or (ii) there exists at least one value ϵ†x that solves the equation:

f†
x(z, ϵ

†
x) = x,

and f∗
x is one valid choice of f†

x. We can, therefore, define at least one function ϵ†x(z,x) that satisfies the above
equation for all x and z for which case (i) is false.

(Y) Likewise, for any x ∈ ΩX , y ∈ ΩY , z ∈ ΩZ , either (i) P (x, y, z) = 0, or (ii) for any θ† ∈ RdΦ there exists at
least function g†y and one value ϵ†y that solves the equation:

g†y(z, ϵ
†
y) = y − θ† ·Φ(x).
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For instance we could have gy(z, ϵy) = ϵy and ϵ†y := y − θ† ·Φ(x) is one such choice. We can therefore define a
function ϵ†y(z,x, y;θ

†) for each θ† ∈ RdΦ that solves the above equation for any x, y and z.

The full joint distribution that generates P (X, Y,Z) from the structural equations can be factorized as follows:

P (X, Y,Z, ϵx, ϵy) = P (ϵx, ϵy |X, Y,Z) P (X, Y,Z).

We can therefore define (for any θ†) at least one joint distribution consistent with the structural assumptions, θ†,
and the observed joint distribution P (X, Y,Z):

P †(X, Y,Z, ϵx, ϵy) := D†(ϵx |X,Z) δ(ϵy − ϵ†y(X, Y,Z;θ)) P (X, Y,Z),

where:

D†(ϵx | x, z) =

{
δ(ϵx − ϵ†x(x, z)) ∃y ∈ ΩY : P (x, y,z) ̸= 0

0 otherwise,

and δ’s are Dirac delta measures over the domains of their arguments.

Therefore, we cannot reject any θ ∈ RdΦ based on the structural equations and the ground truth P (X, Y,Z)
alone, since there exists some joint distribution consistent with both.

Assume the validity of a background constraint Γ, so that Cov(Z, gy) ≡ (β∗
y − θ∗ · β∗

Φ) ∈ Γ. We can only use Γ
to exclude θ for which (β∗

y − θ · β∗
Φ) /∈ Γ. Therefore, it follows immediately that the feasible map T for which

T (Γ,β∗
Φ,β

∗
y) = {θ : (β∗

y − θ · β∗
Φ) ∈ Γ} is complete.

Minimality We have proven that any and all θ ∈ T (Γ,βΦ,βy) satisfy (βy − θ · βΦ) ∈ Γ. Since Γ, βΦ and βy

can be varied arbitrarily and independently of each other, it is clear the dZdΦ + dZ independent, real parameters
required to specify βΦ and βy are needed to specify the feasible map T . This completes the proof of optimality.

A.3 Proof of Thm. 3

We prove a slight generalization of the theorem that accounts for violation of (B1∗). As we will see, the the tight
bound depends on a quantity B that equals 0 when (B1∗) is satisfied.

We can account for violation of (B1∗) by defining a reduced problem

We extend the theorem as stated by allowing for (B1∗) violation. By simple linear algebra, the left and right null
spaces and accounting for (B1∗) violation can be identified polynomial time.

If βΦ has a nonempty left null space, then each point h(θ) ∈ h := h[θ] (i.e., the affine space that is the image of
the affine map h(θ)) corresponds to a continuum of possible θ ∈ Θ ⊆ RdΦ , where Θ is unbounded. This means
any nonempty feasible set TL0 will also be unbounded, and depending on the choice of Φ, the ATE may be
vacuous. We choose to ignore this kind of violation of (B1∗), which corresponds to βΦ not being full rank.

We decompose the set of covariance-irrelevant candidate instruments I = {i ∈ [dZ ] : (βΦ)i = 0} into the following
subsets:

I=0 := {i ∈ [dZ ] : (βΦ)i = 0 ∧ (βy)i = 0},
I̸=0 := {i ∈ [dZ ] : (βΦ)i = 0 ∧ (βy)i ̸= 0},

where the former corresponds to irrelevant candidate instruments that are uncorrelated with the outcome while
the latter corresponds to those correlated with the outcome. Any γg ∈ h := h[θ] will satisfy (γg)i∈I=0

= 0 and
(γg)i∈I ̸=0

̸= 0. Therefore, we can count whether these components are always or never 0 irrespective of θ.

This motivates the following definitions:

DZ := dZ − |I=0| − |I̸=0|,
B := b− |I̸=0|,

through which we define the reduced problem of finding θ for which:

∥H(θ)∥0 ≤ B,
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where:

H(θ) =
∑

j∈[dZ ]\I

(
(βy)i − θ · (βΦ)i

)
ei.

The solutions for θ are exactly the same solutions as those to ∥h(θ)∥0 ≤ b. Notice that H := H[θ] is a dΦ-
dimensional affine subspace of RDZ (we can ignore i ∈ I). Defining J = [dZ ]\I, we see that none of the basis
vectors ej for j ∈ J are orthogonal to H.

Notice that DZ = dZ , B = b and H(θ) = h(θ) iff (B1∗) holds.

We begin with dΦ = 1

If dΦ = 1 then H represents a line embedded in the DZ-dimensional Euclidean space. Consider a point
γ := H(θ) ∈ H for some θ ∈ R. This point satisfies ∥γ∥0 ≤ B iff there are at least DZ −B many values of j ∈ J
for which γj = 0.

Since there are no j ∈ J for which H is orthogonal to J , we know there is exactly one solution θ(j) to the equation
(βy)j − θ(βΦ)j = 0. Thus the equivalence relation ∼ defined by:

∀i, j ∈ J : i ∼ j ⇐⇒ θ(i) = θ(j),

forms a partition over [J ]. Each equivalence class ⟨j⟩ of this partition must have cardinality at least DZ −B for
θ(j) to be in the feasible set. Since |J | = DZ , the number of unique θ(j) solving the constraint, n, is bounded
above by: ⌊

DZ

DZ −B

⌋
. (5)

This proves Cor. 3.2, including the special case of point identification when B > DZ/2 first shown by Kang et al.
(2016).

For dΦ > 1 we enumerate the plausible unique points satisfying the budget constraints

Consider demanding a single instrument is valid In general, H corresponds to a dΦ-dimensional affine
space, not orthogonal to ej for any j ∈ J . For some choice of j ∈ J , H will intersect the (DZ − 1)-dimensional
affine space {γ ∈ RDZ : γj = 0} to form H\j := {γ′ ∈ H : γ′

j = 0}. H\j is necessarily a (dΦ − 1)-dimensional
affine space by the rule for the dimension of the intersection of two affine spaces and the fact that ej ̸⊥ H (where
⊥ means orthogonal). Notice that ej ⊥ H\j .

It is possible that H\j = H\k for some k ∈ J\j, which motivates introducing another equivalence relation dΦ∼:

∀j, k ∈ J : j
dΦ∼ k ⇐⇒ H\j = H\k,

which induces a partition over J . The equivalence classes ⟨j⟩dΦ
represent a single (dΦ − 1)-dimensional affine

space that consists of points γ that simultaneously satisfy the constraints γk = 0 for all k in the equivalence class.
In other terms:

H\j = H\⟨j⟩dΦ := {γ ∈ H : ∀k ∈ ⟨j⟩dΦ
(γk = 0)}.

The number of unique equivalence classes with respect to dΦ∼, ndΦ
, is anywhere between 1 and DZ . However, if

any of the equivalence classes has cardinality at least DZ −B, then there is at least one (dΦ − 1)-dimensional
solution to the L0-norm constraint.

What if we demand more instruments are valid? We could equally ask how many sets of constraints
(γq)q∈Q = 0 for q ∈ Q ⊆ J lead to unique (dΦ − 2)-dimensional affine spaces H\Q := {γ ∈ H : ∀k ∈ Q(γk = 0)}.
The Q such that H\Q is a (dΦ − 2)-dimensional affine space is the union of at least two equivalence classes ⟨j⟩dΦ

and ⟨k⟩dΦ
≠ ⟨j⟩dΦ

. Therefore the number of unique (dΦ − 2)-dimensional affine spaces H\Q, denoted ndΦ−1, is
anywhere between 1 and

(ndΦ
2

)
.
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Likewise, the number of sets Q generating unique 1-dimensional affine spaces (lines) H\Q, denoted n1, is anywhere
between 1 and

( ndΦ
dΦ−1

)
. This implies the upper bound:

n1 ≤
(

DZ

dΦ − 1

)
=

DZ !

(dΦ − 1)!(DZ − dΦ + 1)!
,

where this upper bound corresponds to all such Q ⊂ J having length dΦ − 1, which is the minimum length Q can
take.

Bounding the number of unique points for a given line Consider some Q for which H\Q := {γ ∈ H : ∀k ∈
Q(γk = 0)} is a line. Then define Q′ := {i ∈ J : ∀γ ∈ H\Q(γk = 0)}, which expresses every constraint satisfied
along the line. We ask how many unique points along H\Q can satisfy the L0-norm constraint ∥H\Q∥0 ≤ b. Along
the entire line, there are |Q′| many components for which γk = 0. For a point to satisfy the constraint, we must
have at least DZ − |Q′| many γk = 0 for k ∈ J\Q′. Therefore, by the same arguments that lead to Eq. (5), the
number of unique points solving the constraint along HQ, denoted pQ, is bounded by:

pQ ≤
⌊

DZ − |Q′|
DZ − |Q′| −B

⌋
.

Putting the pieces together As discussed earlier, the minimum length of Q′ is dΦ − 1. This value maximizes
pQ. The maximum number of unique lines n1 also increases as the length |Q′| for each line decreases. Therefore,
the upper bound:

n ≤ DZ !

(dΦ − 1)!(DZ − dΦ + 1)!

⌊
DZ − dΦ + 1

DZ − dΦ + 1−B

⌋
,

which corresponds to all unique lines HQ having Q′ = dΦ − 1, is valid and tight.

A.4 Proof of Thm. 4

We begin with the assumption that the estimated statistic β̂Φ is exactly equal to the observable ground truth β∗
Φ.

Furthermore, since elliptical confidence sets require estimating Cov
(
(β̂y)i, (β̂y)j

)
for pairs i ≠ j—estimates for

these are not openly available with GWAS summary statistics—we construct box constraints using the Bonferroni
correction. Our (1− α)× 100% confidence set over βy, consists of all βy for which each component (βy)i is in
the corresponding (1− α/dZ)× 100% confidence interval, defined below.

Calculate the estimator β̂y := Ĉov(Y,Z) using N i.i.d. samples from P (X, Y,Z). It is well known from the central

limit theorem (Vaart, 1998) that if this estimator has finite marginal standard errors Se (β̂y)i =
√
Var(β̂y)i,then

the following convergence in distribution holds as our choice of N approaches ∞:

√
N
(
(β̂y)i − (β∗

y)i

)
Se(β̂y)i

d−→ N (0, 1),

where β∗
y denotes the ground truth. A similar statement can be made about βΦ under the assumption that

Se (βΦ)ij are finite for all i ∈ [dΦ], j ∈ [dZ ]. However, by the NOME assumption, we choose to neglect any
variation in β̂Φ.

We model Se(β̂y)i with the plug in estimator Ŝe(β̂y)i and construct the required confidence intervals using
quantiles of N (0, 1). The confidence intervals are symmetric about (β̂y)i and have width 2(δβy)i and we denote
the resulting confidence set Bα

y .

Since T (C = {γg ∈ Γ}, s = {β∗
Φ, β̂y}) is a deterministic functional of β̂y, we can compute a confidence set over

T with asymptotically valid coverage explicitly:

T α
(
c = I(γg ∈ Γ), s = {β∗

Φ,B
α
y}
)
=
{
θ ∈ RdΦ : ∃βy ∈ Bα

y

(
(βy − θ · β∗

Φ) ∈ Γ
)}

.
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Confidence sets over a functional that are constructed in this way appear, for example, in Duarte et al. (2023)
and Malloy et al. (2021).

We can rewrite T α(c, s) defined above as the following set:{
θ ∈ RdΦ : ∃βy ∈ Bα

y , Ũ ∈ Σ
(max)
b

(
(βy − θ · β∗

Φ) ∈ Γ̃Ũ

)}
.

For any particular Ũ ∈ Σb, define:

τ Ũi = τℓ ⇐⇒ Ũi = ℓ.

Then θ ∈ T α(c, s), iff there exists a Ũ ∈ Σb for which:∣∣∣(β̂y)i ± (δβy)i − θ · β̂X

∣∣∣ ≤ τ Ũi ⇐⇒
∣∣∣(β̂y)i − θ · β̂X

∣∣∣ ≤ τ Ũi + (δβy)i.

We can therefore define Γ̂α :=
⋃

Ũ∈Σb
Γ̂α
Ũ

, where:

Γ̂α
Ũ

:=
{
γ ∈ RdZ : ∀i ∈ [dZ ]

(
|γi| ≤ τ Ũi + (δβy)i

)}
,

and the confidence set can be rewritten as:

T α
(
c = I[γg ∈ Γ], s = {β∗

Φ, B̂
α
y}
)
= T

(
c′ = I[γg ∈ Γ̂α], s = {β∗

Φ, β̂y}
)
.

Because T α includes all θ ∈ T (c, s = {β∗
Φ,β

∗
y}) with probability at least (1− α)× 100%, we have the following

guarantee:

P
(
θ∗ ∈ T

(
c′, s = {β∗

Φ, β̂y})
))
≥ 1− α,

provided γ∗
g ∈ Γ (i.e., for all c ∈ C∗).

B ADDITIONAL THEOREMS

B.1 A Condition for the Optimality of the Feasible Map under Stronger Structural Assumptions

Here we show that with stricter structural assumptions, sharper feasible maps can be obtained. In particular,
we focus on the case in which the model class M′ consists of all SCMs satisfying Eqs. (1) to (3) for some
predetermined restricted function classes Fz ∋ fz, Fx ∋ fx and Gy ∋ gy.

We show that restrictions on Fz and Fx alone do not affect the sharpness of T and we construct necessary and
sufficient conditions for restrictions over Gy to lead to the existence of sharper feasible maps.

The fact that Gy is the important restriction mirrors results in the (valid) IV literature, in which nonparameteric
bounds can be put on treatment effects based solely on outcomes Y being categorical (Balke and Pearl, 1997) or
bounded continuous (Manski, 1990). In fact, the following result shows that if ΩY is any proper subset of the real
line (e.g., positive but not absolutely bounded), then a sharper feasible map exists.

Theorem 5 (Necessary and sufficient condition for optimality under stricter assumptions). Let M′ be all SCMs
consistent with Eqs. (1) to (3) under restricted function classes as described above. The feasible map T described
in Thm. 2 remains sound against the constraint set C := {I(γg ∈ Γ) : Γ ∈ RdZ} under any suchM′. Furthermore,
the map remains complete if and only if for all z ∈ ΩZ , the section of gy at that z is onto the full real line R.

Corollary 5.1. (Restricted outcome domain) In particular, T is not complete if ΩY is a bounded subset of R.
This includes if ΩY is bounded and categorical, e.g., Ω = {0, 1}.

For any z ∈ ΩZ , the "section" of gy at Z = z is defined as the function gy|z defined over the domain Ωϵy for
which gy|z(ϵy) = gy(z, ϵy). The necessary and sufficient condition for completeness is that the image of each gy|z,
denoted gy|z[ϵy], is the full real line R. Before proving the theorem, we introduce an intuitive example when this
image restriction does not hold.
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B.1.1 An Example in which the Map is Incomplete

SupposeM′ requires that at some point z ∈ ΩZ , the section:

gy|z(ϵy) := gy(Z = z, ϵy) =
a

1 + e−ϵy
,

for some constant a. Intuitively, at this value z, the proportion of Var(Y ) due to confounding is restricted: there
is a value of z for which we know the confounding between X and Y is restricted.

Then, for any x ∈ ΩX and y ∈ ΩY for which P (X = x, Y = y | Z = z) ̸= 0, we may write:

y = θ ·Φ(x)+
a

1 + eϵy
. (6)

Assuming Φ(x) ̸= 0, the above equation imposes a restriction on θ. To see this, consider the case whereby dΦ = 1
and notice that:

1

1 + e−ϵy
∈ [0, 1].

Then, the scalar θ is bounded by Eq. (6):

θ ∈
[

y

Φ(x)
,

y

Φ(x)
+

a

Φ(x)

]
.

Therefore, with only a single value of z, a strong restriction on θ has been imposed through the structural
equations and P (X, Y | Z = z) alone.

B.1.2 Proof of Thm. 5

This proof mirrors that of the original optimality result Thm. 2 in Appx. A.2. We explicitly describe the effect of
the restrictions fz ∈ Fz, fx ∈ Fx and gy ∈ Gy at each stage.

Let the structural Eqs. (1) to (3) hold for some ground truth functions fz ∈ Fz, fx ∈ Fx, Φ∗, gy ∈ Gy and causal
parameter θ∗ ∈ RdΦ .

Soundness The proof of soundness is not affected by the functional restrictions.

It follows immediately from Eq. (3) and the left-linearity of the covariance operator that:

γ∗
g := Cov(gy(Z, ϵy),Z) = Cov(Y,Z)− Cov(θ∗ ·Φ(X),Z)

= β∗
y − θ∗ · β∗

Φ.

Therefore, θ∗ ∈ T (Γ,β∗
Φ,β

∗
y) whenever γ∗

g = (β∗
y − θ∗ · β∗

Φ) ∈ Γ as required.

Completeness Consider any θ† ∈ RdΦ . Then the following holds:

(Z) There exists at least one function f†
z with the following property. Given any z ∈ ΩZ , either: (i) P (x, y, z) = 0

for all x ∈ ΩX and y ∈ ΩY ; or (ii) there exists at least one value ϵ†z that solves the equation:

f†
z(ϵ

†
z) = z.

We know this must hold because the ground truth f∗
z ∈ Fz is a valid choice of f†

z.

We can, therefore, define a function ϵ†z(z) that satisfies the above equation for all z for which case (i) is false. We
have not demanded either f†

z or ϵ†z(z) to be unique.

(X) Likewise, there exists at least one function f†
x with the following property. Given any x ∈ ΩX , z ∈ ΩZ , either:

(i) P (x, y,z) = 0 for all y ∈ ΩY , or (ii) there exists at least one value ϵ†x that solves the equation:

f†
x(z, ϵ

†
x) = x,

and, again, f∗
x ∈ Fx is a valid choice of f†

x. We can, therefore, define at least one function ϵ†x(z,x) that satisfies
the above equation for all x and z for which case (i) is false.
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(Y) In the proof for Thm. 2, we showed that for any x ∈ ΩX , y ∈ ΩY , z ∈ ΩZ , either (i) P (x, y,z) = 0, or (ii)
for any θ† ∈ RdΦ there exists at least one value ϵ†y that solves the equation:

g†y(z, ϵ
†
y) = y − θ† ·Φ(x).

However, for some choices of Gy this is not true. The statement can only be true if, whenever Φ(x) ̸= 0, we have
gy|z[ϵy] = R. Otherwise, there is a choice of θ† and a value g ∈ R\gy|z[ϵy] such that y − θ† ·Φ(x).

We define the set of potentially problematic samples:

ΩV = {(x, y,z) ∈ Ωx × ΩY ×ΩZ : P (X, Y,Z) ̸= 0 ∧Φ(x) ̸= 0}, (7)

and then the values that are "missing" in at least one section of gy:

G =
⋃

(x,y,z)∈ΩV

{
g ∈ R \ gy|z[ϵy]

}
. (8)

For each g ∈ G there are a set of disallowed values for θ:

Θg :=
{
θ ∈ RdΦ : ∃(x, y, z) ∈ ΩV (θ ·Φ(x)) = y − g

}
,

from which we define ΘG :=
⋃

g∈G Θg.

We can therefore construct the sharper feasible set than T = {θ : h(θ) ∈ Γ} by excluding every θ which is
disallowed:

T ′(c = I[γg ∈ Γ], s′ = P (X, Y,Z)) = T \ΘG,

with T ′ = T iff for all z ∈ Ωz, gy|z[ϵy] = R (equivalently, G = ∅).

We know the corresponding feasible map T ′ is sound because it only excludes θ ∈ RdZ if either (i) the sound
feasible map T excludes θ, or (ii) there does not exist a gy ∈ Gy (and thus an m ∈M′) which is consistent with
P (x, y,z). We have therefore proven the necessity of the assumption that the image of each section of gy is the
full real line for sharpness of T .

Sufficiency is simple to prove by following step (Y) in the proof of Thm. 2 in Appx. A.2 to construct a full joint
distribution consistent with each P (X, Y,Z) and the SCM:

P †(X, Y,Z, ϵx, ϵy) := D†(ϵx |X,Z) δ(ϵy − ϵ†y(X, Y,Z;θ)) P (X, Y,Z).

For definitions of the δ’s and D, visit this part of the appendix.

This concludes the proof of Thm. 5.

Minimality We note that T is not necessarily minimal for general Fz, Fx and Gy. If T is sharp, it may not be
minimal because underlying symmetries in these function classes may constrain which βy, βΦ can arise, which
allow one to describe the solution set {θ : (β∗

y − θ · β∗
Φ) ∈ Γ} with fewer parameters. On the other hand, βy, βΦ

may be insufficient for specifying T ′ when gy|z[ϵy] ⊂ R.

B.2 Polytime Testability and Necessary Condition for Unidentifiability

We say the ground truth causal effect θ∗ is unidentifiable when the feasible set T (Γ,β∗
Φ,β

∗
y) = RdΦ . In plain

English, this means nothing can be learned about θ∗ from the data under the current assumptions.

In this section we show that budget constraints enable an efficient test for unidentifiable causal effects even when
dΦ > 1. We also show unidentifiability can only occur under budget constraints if assumption (B1∗) is violated
(recall the definition from Sect. 2.1).

Theorem 6 (Unidentifiability). Assume Eqs. 1, 2, 3 and budget constraints according to some Γ(τ , b). Then
unidentifiability of θ∗ can be decided in O(KdZdΦ) time. Moreover, unidentifiability never occurs under (B1∗).
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B.2.1 Proof of Thm. 6

We prove necessary and sufficient conditions for T (Γ(τ , b),βΦ,βy) = RdΦ .

Defining the function V : RdZ 7→ [K + 1]dZ through its components:

Vi(γg) =


1 |(γg)i| ≤ τ1

l ∈ {2, 3, . . . ,K} τl−1 ≤ |(γg)i| ≤ τl

K + 1 |(γg)i| > τK ,

we have V (γ∗
g) = U∗ is the ground truth for the latent variable U . We can represent V by its one-hot encoding:

Vil(γg) =

{
1 Vi(γg) ≤ l

0 otherwise.

Then budget background search space is explicitly written as:

Γ(τ , b) :=

{
γg ∈ RdZ : ∀l ∈ [K]

(
dZ∑
i=1

Vil(γg) ≥ bl

)}
.

Unidentifiability occurs iff h(θ) = βy − θ · βΦ is contained within Γ(τ , b) for any θ ∈ RdΦ . Equivalently,
unidentifiability occurs iff the affine space h := h[θ] formed by the image of h(θ) is contained within Γ(τ , b).

Consider the standard orthonormal basis {ei}dZ
i=1 for which γg =

∑dZ

i=1(γg)iei. For any direction ei we have that
either (i) (βy)i − (θ · βΦ)i = (βy)i is constant and h is orthogonal to ei, or (ii) (βy)i − (θ · βΦ)i is unbounded. If
(i) holds, it must be the case that (βΦ)i = 0 and thus (B1∗) is violated, and we say candidate instrument Zi is
covariance-irrelevant to Φ(X).

We can define the index set for all covariance-irrelevant candidate instruments:

I := {i ∈ [dΦ] : (βΦ)i = 0}.

Then, h is unbounded in all directions [dZ ]\I but fixed at a single value for each direction in I. Since h is affine it
is also unbounded in the direction

∑
i∈[dZ ]\I ei. Moreover, since points in h are parameterized by θ, there exists

values of θ for which Vi

(
h(θ)

)
= K + 1 for all i ∈ [dZ ]\I.

At such a value for θ, we have V
(
h(θ)

)
= V (P ), where P ∈ RdZ is defined by:

Pi =

{
(βy)i i ∈ I

τK + 1 otherwise.

Therefore, the necessary and sufficient condition for unidentifiability is:

dZ∑
i=1

Vil(P ) ≥ bl,

where I and P can be computed and the condition evaluated by straightforward linear algebra in O(KdZdΦ)
time.

C ALGORITHMS

Alg. 1 depicts a combinatorial search algorithm that finds the exact feasible set of θ and the resulting feasible set
of ATE(x;x0) subject to budget background constraints. The ATE is recovered using a grid search and program
over the linear weights θ with plug-in values of x ∈ ΩX .

Alg. 2 depicts a polynomial time algorithm for the case of dΦ = 1. This method utilises the single solution to the
equation Ai −Biθ = τ for Bi = 0, and our ability to order such solutions along R.
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Algorithm 1 budgetIV general case.

1: for Ũ ∈ Σ
(max)
b do ▷ Iterate through search space (combinatorial)

2: if h(θ) ∈ Γ̃Ũ for some θ then ▷ Linear CSP with convex constraints
3: Ǔ(Ũ)← 0
4: for x ∈ ΩX do ▷ Grid evaluation (for dX ≪ dΦ)
5: Calculate ATE

+/−
Ũ

(x;x0) ▷ Linear program with convex constraints

6: θ
+/−
Ũ

(x;x0) ▷ Arguments for above LP
7: for i ∈ [dZ ] do
8: Ǔi(Ũ)← max{Ǔi(Ũ), Ui(θ

+), Ui(θ
−)}

9: end for
10: end for
11: end if
12: end for
13: return

{(
ATE

+/−
Ũ

, Ǔ(Ũ)
)
: Ũ ∈ Σ

(max)
b

}

Algorithm 2 Polytime budgetIV with dΦ = 1.

1: Let c′(θ) be the indicator function for h(θ) ∈ Γ(τ , b) and U(θ) be the unique value of U for which
h(θ) ∈ ΓU (τ , b) provided c′(θ).

2: for (i, j) ∈ [dZ ]× [K] do
3: if (βΦ)i = 0 ∧ (βy)i ≤ τj then
4: bj ← bj − 1
5: else if (βΦ)i ̸= 0 then
6: θ±ij ←

(βy)i
(βΦ)i

∓ τj
(βΦ)i

7: end if
8: end for
9: if ∀i ∈ [K](bi ≤ 0) then

10: return unidentifiable
11: end if
12: Θ← sort(θ±ij)

13: Θ′ ←
(
Θ1 − 1, Θ2+Θ1

2 , Θ3+Θ2

2 , . . . ,
Θ|Θ|+Θ|Θ|−1

2 ,Θ|Θ| + 1
)

14: intervals← {⟨[Θi,Θi+1],U(Θ′
i)⟩ : c′(Θ′

i)}
15: points←

{
⟨Θi,U(Θi)⟩ : c′(Θi) ∧ ¬c′(Θ′

i)¬c′(Θ′
i+1)

}
16: if intervals ∪ points == ∅ then
17: return infeasible
18: else
19: return intervals ∪ points
20: end if
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D EXPERIMENTS

D.1 Linear Simulation Study

Fig. 3 is the result of a simple experiment to understand the differences between the nonconvex budget background
constraints and any convex relaxation thereof. We consider violation of (A2) in a linear model where association
between X and Z is wholly due to unobserved confounding:

Z := ϵz,

X := ϵx,

Y := θ∗X + ϵy.

We consider dX = 1 and dZ = 2, take the exogenous variables to have a joint distribution (ϵz, ϵx, ϵy) ∼ N (0,Σϵϵ),
where the covariance is given by the terms:

Σϵϵ :=


η2Z1

ρZ1Z2
ηZ1

ηZ2
ρZ1ϵxηZ1

ηϵx ρZ1ϵyηZ1
ηϵy

η2Z2
ρZ2ϵxηZ2

ηϵx ρZ2ϵyηZ2
ηϵy

η2ϵx ρϵxϵyηϵxηϵy
η2ϵy

 .

We fix the following throughout the study:

θ∗ := 1,

β∗
x := Cov(X,Z) = (2,−4),

γ∗
g := Cov(ϵy,Z) = (−2, 0.4),

which, in turn, imply β∗
y = (0, 4.4).

D.1.1 Sweep Through Increasingly Uncertain Background Constraints

We consider three kinds of background constraints: (a) budget constraints, (b) an L2-norm relaxation (a similar
setting to Watson et al. (2024)), and (c) an L1-norm relaxation (which is motivated by the relaxation in Kang
et al. (2016), under the setting where point identification is not guaranteed):

(a) γg ∈ Γ(τ = (τ, 0.6), b = (1, 2)),
(b) ∥γg∥2 ≤ τ ,
(c) ∥γg∥1 ≤ τ .

We adjust τ from 0 to 10 linearly across a grid of 101 simulation studies.

D.1.2 Randomized Parameters for the Covariance Matrix

We select random values for Σϵϵ between simulations. The data generating process is constrained by two
requirements: (i) the matrix Σϵϵ must be positive definite, and (ii) the fixed values of g∗ and β∗

x, which demand:

(γ∗
g )1 = ρZ1ϵyηZ1

ηϵy , (9)

(γ∗
g )2 = ρZ2ϵyηZ2ηϵy , (10)

(β∗
x)1 = ρZ1ϵxηZ1

ηϵx , (11)
(β∗

x)2 = ρZ2ϵxηZ2
ηϵx . (12)

We choose to generate Σϵϵ by a rejection method. We sample the marginal variances according to:

ηZ1 , ηZ2 , ηϵx , ηϵy
i.i.d∼ Exp(1),

and calculate the would-be ρ’s from Eqs. (9) to (12). This enforces condition (ii). We then test whether the
resultant Σϵϵ is positive definite. If it is, (i) is satisfied and we perform the experiment; otherwise we resample
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the η’s from Exp(1). Fig. 3 shows the resulting feasible sets with plug-in β̂Φ and β̂y, calculated from a dataset of
N = 10000 samples.

The feasible sets over θ in Fig. 3 were found using the efficient budgetIV algorithm for dΦ = 1, an implementation
of which is provided in the supplement.

D.2 Nonlinear Simulation Study

In this experiment, we show another advantage of the budget background constraint approach over convex
relaxations. Different values of the decision variables Ũ lead to different functions ATE(x;x0).

D.2.1 Endogenous Equations

The candidate instruments are in the domain ΩZ = {0, 1}dZ , where dZ = 6; the exposure is a scalar in ΩX = [0, 1];
and the outcome is a scalar in the full real line ΩY = R.

The ground truth structural equations are:

Z := ϵz

X := fx(Z, ϵx),

Y := θ∗ ·Φ∗(X) + gy(Z, ϵy),

where the functions take the form:

fx(Z, ϵx) = Expit(ϵx −m ·Z),

gy(Z, ϵy) = λ(A3)Z ·Λ ·Z + λ(A2)ϵy,

Φ∗(X) = sΦ
(
(X − 1/4)2 − 1/16

)
,

and θ∗ = 1.

The real vector m ∈ RdZ and the binary matrix Λ ∈ {0, 1}dZ×dZ are sampled randomly for each experiment.
The components of m are i.i.d normal and the components of Λ are independent Bernoulli trials according to:

m1, . . . ,mdZ

i.i.d∼ N (1, 4),

Λij ∼


N (0.9, 0.9) i = j > 3,

N (0.3, 0.3) i ̸= j and i, j > 3,

0 otherwise.

Notice that candidate instruments Z1, Z2, Z3 all do not violate (A3).

The remaining parameters sΦ, λ
(A2), λ(A3) ≥ 0 are restricted to be positive but are otherwise varied accross

simulation settings (see Appx. D.2.3).

D.2.2 Generating the Exogenous Variables

We generate (Z, ϵx, ϵy) to have a block diagonal covariance structure where so that Z1, Z2 and Z3 are valid
instruments.

This is achieved by a Markov chain approach over binary Z with:

Z1 ∼ Ber(0.05),

Z4 ∼ Ber(0.05),

Zj+1 | Zj = 1 ∼ Ber(0.9),

Zj+1 | Zj = 0 ∼ Ber(0.05),

where j ∈ {2, 3, 5, 6}. Then the noise residuals are given by:

ϵx = γϵx ·Z + ϵ′,

ϵy = γϵy ·Z + ϵ′,
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where:

(γϵx)1, . . . , (γϵx)6
i.i.d∼ N (0, 1),

(γϵy )1, . . . , (γϵy )3 = 0,

(γϵx)4, . . . , (γϵx)6
i.i.d∼ N (0, 1),

ϵ′ ∼ N (0, 1).

D.2.3 Varying the Simulation Setting

The remaining parameters, (sΦ, λ(A2), λ(A3)), are set to control the variance Var(Y ), signal to noise ratio SNRY ,
and the ratio of effects, defined by:

R :=
λ(A3)

λ(A2)
∥Cov(Z ·Λ ·Z, Z̃)∥2
∥Cov(ϵy, Z̃)∥2

,

where Z̃ := (Z4, . . . , Z6).

Using the following shorthand:

P := φ(X) :=
√

1 + (X − 0.5)2,

γi := z⊤
i ·Λ · zi

r :=
∥Cov(γ, Z̃)∥2
∥Cov(ϵy, Z̃)∥2

,

U := u(Z, ϵy) :=
r

R
γ(Z) + ϵy,

the remaining free parameters sΦ, λ
(A2), λ(A3) ≥ 0 are expressed as:

s2Φ =
1

VarP

VarY

1 + 1
SNRY

,

λ(A2) =
sΦ Cov(P,U)

VarU

(
−1 + 1

2

√
1 +

VarU

s2Φ(Cov(P,U))2
VarY

1 + SNRY

)
,

λ(A3) =
R

r
λ(A2).

We choose to fix Var(Y ) := 10 (this is simply a choice of the scale with which we choose to measure Y ). We
produce a three-by-three grid of experiments with the values of SNRY = 1/10, 1/5, 1 and R = 1/2, 1, 2.

The remaining parameters are fixed to approximately fit these constraints by a post-hoc method using plug-in
empirical estimates: V̂ar(P ), V̂ar(U), Ĉov(P,U) and a plug-in ratio estimate:

r̂ :=
∥Ĉov(Z ·Λ ·Z, Z̃)∥2
∥Ĉov(ϵy, Z̃)∥2

,

where a dataset of 5× 105 samples is used to construct the estimates.

D.2.4 Results from Main Text

With the same N = 5× 105 sample dataset, we run an implementation of budgetIV, included in the supplement,
with feasible search space Γ(τ = 0, b = 3). Fig. 6 shows the results for the full simulation grid.
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Figure 6: Simulation grid for the experiment discussed in Appx. D.2. Some settings (a, b) result in
a feasible set in which the ATE is qualitatively very different for each plausible Ũ . In other settings (g–i) U∗

is identified exactly. Σ
(max)
b =

(
6
3

)
= 20, so budgetIV significantly reduced the space of plausible Ũ in this

experiment.
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(i) b∗ = 90

Figure 7: Simulation grid for the experiment discussed in Appx. D.3. Each subfigure corresponds to a
different ground truth number of valid IVs b∗. Finite sample confidence sets using budgetIV_scalar and Oracle
are shown for the constraints Γ(τ = 0, b) where b is varied along the horizontal axis. Confidence intervals for
the benchmarking methods MR-Egger, MR-Median, MBE and IVW, under which b is not an adjustable
parameter, are labeled for each experiment. Sub-figures (a) through (e) show variability in the confidence intervals
of MBE when valid IVs are a minority—despite the required modal assumption of holding for each ground truth
model. The approach MASSIVE, included in Fig. 5 in the main text, takes significantly more computational
resources than the the methods included in this simulation grid.
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(1, 1) (2, 1)

(1, 2)

(2, 1)

(1, 2)

(a) Values of U ∈ Σb, which partition Γ into
subspaces, which themselves are disconnected.

Ũ = (1, 2)

Ũ = (2, 1)

(b) Values of Ũ ∈ Σ
(max)
b and their corresponding

Γ̃Ũ , which are connected and convex.

Figure 8: A comparison between representing the search space Γ(τ = (τ1, τ2), b = (1, 2)) as a disjoint union over
ΓU or a union over Γ̃Ũ .

D.3 Linear Many Candidate IV Study

Simulation setting We performed a grid of simulations using the following linear SEM with (A3) violation
among a varying proportion of the 100 candidate IVs:

Z := ϵz,

X := δ ·Z + ϵx.

Y := θ∗X + γ ·Z + ϵy,

b∗ := ∥γ∗
g ∥0 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90},

θ∗ := 1.

We set (ϵz, ϵx, ϵy) to a multivariate normal centered at 0 with no correlation except ρ := Corr(ϵx, ϵy) drawn
uniformly from [−1, 1]. The marginal standard deviations are drawn i.i.d. from Exp(1). The first b∗-many entries
of γ are set to 0 and the remaining entries, as well as the entries of δ, are samples i.i.d. from the uniform
distribution U [1, 2].

A two-sample approach was applied with Nx = 1× 106 samples used to sample data to generate the summary
statistics β̂x := Ĉov(Z, X) and Ny = 1 × 105 samples used to generate β̂y := Ĉov(Z, X). This was to model
the typical occurrence that β̂x/SE(β̂x) ≫ β̂y/SE(β̂y) (SE is the empirical standard error) because candidate
instruments are selected if they have a strong association with X (see Bowden et al. (2016b)).

This simulation setting reflects common modeling assumptions that are applied in the original experiments for
each of the benchmark methods.

Results Results for the case b∗ = 30 were interpreted in Sect. 5, including the caption to Fig. 5. Further
interpretation, including to the stability of the MBE estimator is given in the caption to Fig. 7.

E SEARCHING THROUGH THE BUDGET CONSTRAINTS

The number of unique decision variables |Σb| is given by the number of assignments U ∈ [K + 1]dZ for which at
least b1 components of U are equal to 1, at least b2 components are no greater than 2 and so on until exactly
bK+1 := dZ components.

Suppose exactly d1 components are equal to 1, exactly d2 − d1 are equal to 2 and so on. This number of
combinations with this property is equal to the multinomial coefficient

(
dZ

d1,(d2−d1),...,(dK+1−dK)

)
.
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Given that we require di ≥ bi for all i ∈ [K + 1], we can write the following:

|Σb| =
d2∑

d1=b1

· · ·
dZ∑

dK=bK

dZ !∏K+1
ℓ=1 (dℓ − dℓ−1)!

.

By comparison, |Σ(max)
b | count Ũ ∈ [K + 1]dZ for which exactly b1 components equal 1, b2 − b1 components equal

2 and so on. Therefore, denoting b0 := 0, we have:

|Σ(max)
b | = dZ !∏K+1

ℓ=1 (bℓ − bℓ−1)!
.

The ratio gap between these sizes is given exactly by:

|Σb|
|Σ(max)

b |
=

d2∑
d1=b1

· · ·
dZ∑

dK=bK

∏K+1
ℓ=1 (bℓ − bℓ−1)!∏K+1
ℓ=1 (dℓ − dℓ−1)!

> 1.

Depending on the scaling of dZ and b, asymptotic gap can be O(1) or as extreme as O(dZK).

Fig. 8 shows that the subsets ΓU ⊂ Γ(τ , b) for U ∈ Σb are disconnected, while Γ̃Ũ ⊂ Γ for Ũ ∈ Σ
(max)
b are

cuboids in general. Therefore, it is clear that testing for intersection between h(θ) and Γ̃Ũ is more efficient than
searching through the decision variables U directly.
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F SUMMARY OF RELAXED IV METHODS

Paper dX > 1 dZ > 1 Cont. Nonlin. 2-sample Inference Violation Feasible γg

Conley et al. (2012) ✓ ✓ ✓ ✗ ✗ ✓ (A3) Convex set
Nevo and Rosen (2012) ✓ ✓ ✓ ✗ ✗ ✓ (A2) Convex set
Ramsahai (2012) ✗ ✗ ✗ ✓ ✓ ✗ (A2) ∨ (A3) N/A
Bowden et al. (2015) ✗ ✓ ✓ ✗ ✓ ✓ (A3)† dZ →∞
Kolesár et al. (2015) ✗ ✓ ✓ ✗ ✗ ✓ (A3)† dZ →∞
Bowden et al. (2016a) ✗ ✓ ✓ ✗ ✗ ✓ (A3) Sparse
Kang et al. (2016) ✗ ✓ ✓ ✗ ✗ ✗ (A3)* Sparse
Silva and Evans (2016) ✗ ✓ ✗ ✓ ✓ ✓ (A2) & (A3) N/A
Hartwig et al. (2017) ✗ ✓ ✓ ✗ ✓ ✓ (A3) Mode zero
Guo et al. (2018) ✗ ✗ ✓ ✓ ✗ ✓ (A3) Mode zero
Windmeijer et al. (2019) ✗ ✓ ✓ ✗ ✗ ✓ (A3)* Sparse
Shapland et al. (2019) ✗ ✓ ✓ ✗ ✗ ✓ (A3)* L0-norm
Bucur et al. (2020) ✗ ✓ ✓ ✗ ✓ - (A3)* L0-norm
Kang et al. (2020) ✗ ✓ ✓ ✗ ✗ ✓ (A2) & (A3) Point
Kuang et al. (2020) ✗ ✓ ✗ ✗ ✗ ✗ (A2)* & (A3)* Point
Hartford et al. (2021) ✗ ✓ ✓ ✓ ✗ ✗ (A3)* Mode zero
Vancak and Sjölander (2023) ✗ ✗ ✓ ✓ ✗ ✓ (A2) & (A3) Point
Xue et al. (2023) ✗ ✓ ✓ ✗ ✓ - (A2) & (A3) L0-norm
Watson et al. (2024) ✗ ✓ ✓ ✗ ✓ ✓ (A3) Convex set
budgetIV ✓ ✓ ✓ ✓ ✓ ✓ (A2) & (A3) Star domain

Table 1: Summary of the constraints and affordances of some notable relaxed IV methods. We exclude approaches that adhere to classical IV
assumptions but provide nonparametric partial identification bounds as out of scope (e.g., Balke and Pearl (1997); Kilbertus et al. (2020); Levis et al.
(2023)). We do the same with more generic algorithms not specifically designed for the IV setting (e.g., Hu et al. (2021); Duarte et al. (2023); Padh et al.
(2023)). The columns denote, in order, if the method allows for: (1) multidimensional exposures; (2) multiple candidate instruments; (3) continuous data;
(4) nonlinear structural equations; (5) summary statistic input; and (6) statistical inference (where -corresponds to point estimators in partially identifiable
settings). The final two columns indicate (7) which IV assumptions (if any) may be violated and (8) the assumed geometry of the feasible region. The *
in column (7) indicates that only some candidate IVs are allowed to violate starred assumptions (typically fewer than 50%), while † indicates that the
mechanism behind a candidate IV’s (A3) violation must be independent to the effect of the candidate on the exposure. The N/A entries in column (8)
correspond to fully nonparametric models in which γg is undefined.
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