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Abstract

One of the goals of causal inference is to generalize from past experiments and
observational data to novel conditions. While it is in principle possible to eventually
learn a mapping from a novel experimental condition to an outcome of interest,
provided a sufficient variety of experiments is available in the training data, coping
with a large combinatorial space of possible interventions is hard. Under a typical
sparse experimental design, this mapping is ill-posed without relying on heavy
regularization or prior distributions. Such assumptions may or may not be reliable,
and can be hard to defend or test. In this paper, we take a close look at how
to warrant a leap from past experiments to novel conditions based on minimal
assumptions about the factorization of the distribution of the manipulated system,
communicated in the well-understood language of factor graph models. A pos-
tulated interventional factor model (IFM) may not always be informative, but it
conveniently abstracts away a need for explicitly modeling unmeasured confound-
ing and feedback mechanisms, leading to directly testable claims. Given an IFM
and datasets from a collection of experimental regimes, we derive conditions for
identifiability of the expected outcomes of new regimes never observed in these
training data. We implement our framework using several efficient algorithms, and
apply them on a range of semi-synthetic experiments.

1 Introduction

Causal inference is a fundamental problem in many sciences, such as clinical medicine [8, 73, 69]
and molecular biology [66, 41, 29]. For example, causal inference can be used to identify the effects
of chemical compounds on cell types [73] or determine the underlying mechanisms of disease [52].

One particular challenge in causal inference is generalization — the ability to extrapolate knowledge
gained from past experiments and observational data to previously unseen scenarios. Consider a
laboratory that has performed several gene knockouts and recorded subsequent outcomes. Do they
have sufficient information to predict how the system will behave under some new combination(s) of
knockouts? Conducting all possible experiments in this setting would be prohibitively expensive and
time consuming. A supervised learning method could, in principle, map a vector representation of the
design to outcome variables of interest. However, past experimental conditions may be too sparsely
distributed in the set of all possible assignments, and such a direct supervised mapping would require
leaps of faith about how assignment decisions interact with the outcome, even if under the guise of
formal assumptions such as linearity.

In this paper, we propose a novel approach to the task of intervention generalization, i.e., predicting
the effect of unseen treatment regimes. We rely on little more than a postulated factorization of the
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Figure 1: (a) A dynamic process where only the final step is (simultaneously) observed. Intervention
variables are represented as white squares, random variables as circles, and dashed lines indicate
hidden variables. (b) A bird’s eye unstructured view of the sampling process, where an intervention
vector dictates σ the distribution obtained at an agreed-upon time frame T .

distribution describing how intervention variables σ interact with a random process X , and a possible
target outcome Y .

Related setups appear in the causal modeling literature on soft interventions [18], including its
use in methods such as causal bandits [45] and causal Bayesian optimization [4] (see Section 6).
However, these methods rely on directed acyclic graphs (DAGs), which may be hard to justify in many
applications. Moreover, in the realistic situation where the target of a real-world intervention is a set
of variables [26] and not only the “child” variable within a DAG factor, the parent-child distinction
is blurred and previous identification results do not apply. Without claiming that our proposal is
appropriate for every application, we suggest the following take on intervention generalization:
model a causal structure as a set of soft constraints, together with their putative (arbitrary but
local) modifications by external actions. Our interventional factor model (IFM) leads to provable
intervention generalization via a factor graph decomposition which, when informative, can be tested
without further assumptions beyond basic relations of conditional independence. IFMs are fully
agnostic with regards to cycles or hidden variables, in the spirit of Dawid [23]’s decision-theoretic
approach to causal inference, where the key ingredient boils down to statements of conditional
independence among random and intervention variables.

Our primary contributions are as follows. (1) We introduce the interventional factor model (IFM),
which aims to solve intervention generalization problems using only claims about which interventions
interact with which observable random variables. (2) We establish necessary and sufficient conditions
for the identifiability of treatment effects within the IFM framework. (3) We adapt existing results
from conformal inference to our setting, providing distribution-free predictive intervals for identifiable
causal effects with guaranteed finite sample coverage. (4) We implement our model using efficient
algorithms, and apply them to a range of semi-synthetic experiments.

2 Problem Statement

Data assumptions. Fig. 1(a) illustrates a generative process common to many applications and
particularly suitable to our framework: a perturbation, here represented by a set of interventional
variables σ, is applied and a dynamic feedback loop takes place. Often in these applications (e.g,
experiments in cell biology [66] and social science [59]), the sampling of this process is highly
restrictive, and the time-resolution may boil down to a single snapshot, as illustrated by Fig. 1(b).
We assume that data is given as samples of a random vector X collected cross-sectionally at a
well-defined time-point (not necessarily at equilibrium) under a well-defined intervention vector σ.
The importance of establishing a clear sampling time in the context of graphical causal models is
discussed by [21]. The process illustrated in Fig. 1(a) may suggest no particular Markovian structure
at the time the snapshot is taken. However, in practice, it is possible to model the black-box sampling
process represented in Fig. 1(b) in terms of an energy function representing soft constraints [48].
These could be the result of particular equilibrium processes [47], including deterministic differential
equations [40], or empirically-verifiable approximations [59].

The role of a causal model is to describe how intervention σ locally changes the energy function. In
the context of causal DAG models, sometimes this takes the guise of “soft interventions” and other
variations that can be called “interventions on structure” [43, 55] or edge interventions [70]. Changes
of structural coefficients in possibly cyclic models have also been considered [37]. The model family
we propose takes this to the most abstract level, modeling energy functions via recombinations of
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Figure 2: Examples of distinct causal graphical models, expressing different factorization assump-
tions. Random variables are represented as circles, intervention variables as white squares, and factors
as black squares. (a) A directed acyclic graph (DAG) with explicit intervention variables. (b) The
corresponding interventional factor model (IFM) for (a). (c) A Markov random field (MRF) with
interventional variables, thus, forming a chain graph.

local interventional effects without acyclicity constraints, as such constraints should not be taken for
granted [22] and are at best a crude approximation for some problems at hand (e.g., [66]).

Background and notation. The notion of an intervention variable in causal inference encodes
an action that modifies the distribution of a system of random variables. This notion is sometimes
brought up explicitly in graphical formulations of causal models [60, 72, 23]. To formalize it,
let σ denote a vector of intervention variables (also known as regime indicators), with each σi

taking values in a finite set {0, 1, 2, . . . ,ℵi − 1}. A fully specified vector of intervention variables
characterizes a regime or an environment (we use these terms interchangeably). Graphically, we
represent intervention variables using white squares and random variables using circles (Fig. 2). We
use subscripts to index individual (random or interventional) variables and superscripts to index
regimes. For instance, Xj

i denotes the random variable Xi under regime σj , while σj
i denotes the ith

intervention variable of the jth environment. (Note that the order of the variables is arbitrary.) We
occasionally require parenthetical superscripts to index samples, so x

j(k)
i denotes the kth sample of

Xi under regime σj .

For causal DAGs, Pearl’s do operator [60] denotes whether a particular random variable Xi is
manipulated to have a given value (regardless of the values of its parents). As an example, consider
a binary variable Xi ∈ {TRUE, FALSE}. We can use a (categorical) intervention variable σi to
index the two “do-interventional” regimes: σi = 1 denotes “do(Xi = TRUE)”, and σi = 2 denotes
“do(Xi = FALSE).” We reserve σi = 0 to denote the choice of “no manipulation”, also known as
the “observational” regime. However, one need not think of this σi = 0 setting as fundamentally
different than the others; indeed, it is convenient to treat all regimes as choices of data generating
process.4 Moreover, there is no need for intervention variables to correspond to deterministic settings
of random variables; they may in principle describe any well-defined change in distribution, such as
stochastic or conditional interventions [23, 17]. As a stochastic example, σi = 3 could correspond to
randomly choosing do(Xi = TRUE) 30% of the time and do(Xi = FALSE) 70% of the time. As a
conditional example, σi = 4 could mean “if parents of Xi satisfy a given condition, do(Xi = TRUE),
otherwise do nothing”. When Xi can take more values, the options for interventional regimes become
even more varied. The main point to remember is that σi = 1, σi = 2, . . . should be treated as distinct
categorical options, and we reserve σi = 0 to denote the “observational” case of “no manipulation”.

As discussed in the previous section, the probability density/mass function p(x;σ) can be the result
of a feedback process that does not naturally fit a DAG representation. Indeed, a growing literature
in causal inference carefully considers how DAGs may give rise to equilibrium distributions (e.g.,
[47, 12, 11]), or marginals of continuous-time processes (e.g., [57]). However, they come with
considerable added complexity of assumptions to ensure identifiability. In this work, we abstract
away all low-level details about how an equilibrium distribution comes to be, and instead require
solely a model for how a distribution p(x) factorizes as a function of σ. These assumptions are
naturally formulated as a factor graph model [44] augmented with intervention variables, which we
call an interventional factor model (IFM).

4In general, there can be infinitely many choices for interventional settings. However, for the identifiability
results in the next section, we cover the finite case only, as it removes the need for smoothness assumptions on
the effect of intervention levels.
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Problem statement. We are given a space Σ of possible values for an intervention vector σ of
dimension d, making |Σ| ≤

∏d
i=1 ℵi. For a range of training regimes Σtrain ⊂ Σ, we are given col-

lection of datasets D1,D2, . . . ,Dt, with dataset Dj collected under environment/regime σj ∈ Σtrain.
The goal is to learn p(x;σ⋆), and µ(σ⋆) := E[Y ;σ⋆], for all test regimes σ⋆ ∈ Σtest = Σ\Σtrain.

In each training dataset, we measure a sample of post-treatment i.i.d. draws of some m-dimensional
random vector X (possibly with m ̸= d, as there is no reason to always assume a one-to-one mapping
between intervention and random variables), and optionally an extra outcome variable Y . The
data generating process p(x;σj) is unknown. We assume Y ⊥⊥σ | X for simplicity5, which holds
automatically in cases where Y is a known deterministic summary of X . We are also given a
factorization of p(x;σ),

p(x;σ) ∝
l∏

k=1

fk(xSk
;σFk

), ∀σ ∈ Σ, (1)

where Sk ⊆ [m] and Fk ⊆ [d] define the causal structure. The (positive) functions fk(·; ·) are
unknown. The model p(y | x) can also be unknown, depending on the problem.

As illustrated in Figs. 2(a-b), such an intervention factor model (IFM) can also encode (a re-
laxation of) the structural constraints implied by DAG assumptions. In particular, note the
one-to-one correspondence between the DAG factorization in Fig. 2(a) and the factors in the IFM
in Fig. 2(b): f1(x1;σ1) := p(x1;σ1), f2(x1, x2;σ2) := p(x2 | x1;σ2), and f3(x1, x2, x3;σ3) :=
p(x3 | x1, x2;σ3). This explicitly represents that the conditional distribution of x1 given all other
variables fully factorizes in σ: i.e., p(x1 | x2, x3;σ) ∝ f1(x1;σ1)f2(x1, x2;σ2)f3(x1, x2, x3;σ3).
Such factorization is not enforced by usual parameterizations of Markov random fields (i.e., graphical
models with only undirected edges) or chain graphs (graphical models with acyclic directed edges
and undirected edges) [25] such as the example shown in Fig. 2(c).

Scope and limitations. The factorization in Eq. (1) may come from different sources, e.g., from
knowledge about physical connections (it is typically the case that one is able to postulate which
variables are directly or only indirectly affected by an intervention), or as the result of structure
learning methods (e.g., [1]). For structure learning, faithfulness-like assumptions [72] are required, as
conditional independencies discovered under configurations Σtrain can only be extrapolated to Σtest

by assuming that independencies observed over particular values of σ can be generalized across all
regimes. We do not commit to any particular structure learning technique, and refer to the literature
on eliciting and learning graphical structure for a variety of methods [42]. In Appendix A, we provide
a general guide on structure elicitation and learning, and a primer on causal modeling and reasoning
based solely on abstract conditional independence statements, without a priori commitment to a
particular family of graphical models [23].

Even then, the structural knowledge expressed by the factorization in Eq. (1) may be uninformative.
Depending on the nature of Σtrain and Σtest, it may be the case that we cannot generalize from training
to test environments, and p(x;σ⋆) is unidentifiable for all σ⋆ ∈ Σtest. However, all methods for causal
inference rely on a trade-off between assumptions and informativeness. For example, unmeasured
confounding may imply no independence constraints, but modeling unmeasured confounding is
challenging, even more so for equilibrium data without observable dynamics. If we can get away with
pure factorization constraints implied by an array of experimental conditions and domain knowledge,
we should embrace this opportunity. This is what is done, for instance, in the literature on causal
bandits and causal Bayesian optimization [45, 49, 4, 75], which leverage similar assumptions to
decide what to do next. However, we are not proposing a method for bandits, Bayesian optimization,
or active learning. The task of estimating p(x;σ⋆) and µ(σ⋆) for a novel regime is relevant in itself.

3 Interventional Factor Model: Identification

We define our identification problem as follows: given the population distributions P(Σtrain) :=
{p(x;σ1), p(x;σ2), . . . , p(x;σt)} for the training regimes σj ∈ Σtrain, and knowledge of the fac-
torization assumptions as given by Eq. (1), can we identify a given p(x;σ⋆) corresponding to some
unobserved test regime σ⋆ ∈ Σtest?

5Otherwise, we can just define Y := Xm, and use the identification results in Section 3 to check whether Y
can be predicted from σ.
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Figure 3: (a) An interventional factor model (IFM) with three (binary) intervention variables. (b) The
junction tree of the σ-graph associated with the IFM in (a): intervention variables are arranged as a
hypergraph, where the hypervertices represent the sets of intervention variables that share a factor and
the edge represents the overlap between the two sets of intervention variables. (c) A table displaying
the assignments for regimes in Σtrain. From this Σtrain and the assumptions in (a), it is possible to
generalize to the two missing regimes, i.e., σ1 = σ2 = σ3 = 1, and σ1 = σ3 = 1, σ2 = 0.

This identification problem is not analyzed in setups such as causal Bayesian optimization [4, 75],
which build on DAGs with interventions targeting single variables. Without this analysis, it is unclear
to what extent the learning might be attributed to artifacts due to the choice of prior distribution or
regularization, particularly for a sparsely populated Σtrain. As an extreme case that is not uncommon
in practice, if we have binary intervention variables and never observe more than one σi set to
1 within the same experiment, it is unclear why we should expect a non-linear model to provide
information about pairs of assignments σi = σj = 1 using an off-the-shelf prior or regularizer.
Although eventually a dense enough process of exploration will enrich the database of experiments,
this process may be slow and less suitable to situations where the goal is not just to maximize some
expected reward but to provide a more extensive picture of the dose-response relationships in a
system. While the smoothness of p(x;σ) as a function of σ is a relevant domain-specific information,
it complicates identifiability criteria without further assumptions. In what follows, we assume no
smoothness conditions, meaning that for some pair p(x;σa), p(x;σb), with a ̸= b, these probability
density/mass functions are allowed to be arbitrarily different. Such setting is particularly suitable for
situations where interventions do take categorical levels, with limited to no magnitude information.

Identification: preliminaries. Before introducing the main result of this section, let us start by
considering the toy example displayed in Fig. 3: Fig. 3(a) shows the graphical model (how X could
be factorized is not relevant here), and Fig. 3(c) shows the assignments for the training regimes
Σtrain (all intervention variables are binary). This training set lacks the experimental assignment
σ1 = σ2 = σ3 = 1.6 However, this regime is implied by the model and Σtrain. To see this, consider
the factorization p(x;σ) ∝ f1(x;σ1, σ2)f2(x;σ2, σ3), it implies:

p
(
x; (1, 1, 0)

)
p
(
x; (0, 1, 0)

) ∝ f1
(
x; (1, 1)

)
f1
(
x; (0, 1)

) ,
where we used (1, 1, 0) etc. to represent the σ assignments. Because both (1, 1, 0) and (0, 1, 0) are in
Σtrain, the ratio is identifiable up to a multiplicative constant. Moreover, multiplying and dividing the
result by f2

(
x; (1, 1)

)
, we get:

p
(
x; (1, 1, 0)

)
p
(
x; (0, 1, 0)

) ∝ f1
(
x; (1, 1)

)
f1
(
x; (0, 1)

) f2(x; (1, 1))
f2
(
x; (1, 1)

) ∝ p
(
x; (1, 1, 1)

)
p
(
x; (0, 1, 1)

) ,
from which, given that (0, 1, 1) is also in Σtrain, we can derive p

(
x; (1, 1, 1)

)
.

3.1 Message Passing Formulation

The steps in this reasoning can be visualized in Fig. 3(b). The leftmost hypervertex represents (σ1, σ2)
and suggests σ1 can be isolated from σ3. The first ratio p

(
x; (1, 1, 0)

)
/p
(
x; (0, 1, 0)

)
considers three

roles: σ1 can be isolated (it is set to a “baseline” of 0 in the denominator) and σ3 is yet to be
considered (it is set to the baseline value of 0 in the numerator). This ratio sets the stage for the next
step where (σ2, σ3) is “absorbed” in the construction of the model evaluated at (1, 1, 1). The entries
in Σtrain were chosen so that we see all four combinations of (σ1, σ2) and all four combinations of

6As well as the assignment σ1 = σ3 = 1, σ2 = 0, which can be recovered by an analogous argument.

5



(σ2, σ3), while avoiding the requirement of seeing all eight combinations of (σ1, σ2, σ3). How to
generalize this idea is the challenge. Next, we present our first proposed solution.

Definitions. Before we proceed, we need a few definitions. First, recall that we represent the
baseline (or “observational”) regime as σ1 = σ2 = · · · = σd = 0. This describes data captured under
a default protocol, e.g., a transcriptomic study in which no genes are knocked down. Let Σ0

[Z] denote
the set of all environments σj ∈ Σ such that σj

i = 0 if i ̸∈ Z. For instance, for the example in Fig. 3, a
set Z := {2} implies that Σ0

[Z] =
{
(0, 0, 0), (0, 1, 0)

}
. Finally, let σ[Z(⋆)] be the intervention vector

given by σi = σ⋆
i , if i ∈ Z, and 0 otherwise. In what follows, we also use of the concepts of graph

decompositions, decomposable graphs and junction trees, as commonly applied to graphical models
[46, 20]. In Appendix B, we review these concepts.7 An IFM I with intervention vertices σ1, . . . , σd

has an associated σ-graph denoted by Gσ(I), defined as an undirected graph with vertices σ1, . . . , σd,
and where edge σi − σj is present if and only if σi and σj are simultaneously present in at least one
common factor fk in I . For example, the σ-graph of the IFM represented in Fig. 3(a) is σ1 − σ2 − σ3.
This is a decomposable graph with vertex partition A = {σ1}, B = {σ2} and C = {σ3}. As this
σ-graph is an undirected decomposable graph, it has a junction tree, which we depict in Fig. 3(b).

Identification: message passing formulation. Let I be an IFM representing a model for the
m-dimensional random vector X under the d-dimensional intervention vector σ ∈ Σ. Model I has
unknown factor parameters but a known factorization p(x;σ) ∝

∏
k fk(xSk

;σFk
).

Theorem 3.1 Assume that the σ-graph Gσ(I) is decomposable. Given a set Σtrain = {σ1, . . . , σt} ⊆
Σ and known distributions p(x;σ1), . . . , p(x;σt), the following conditions are sufficient to identify
any p(x;σ⋆), σ⋆ ∈ Σ:
i) all distributions indexed by σ1, . . . , σt, σ⋆ have the same support; and
ii) Σ0

[Fk]
∈ Σtrain for all Fk in the factorization of I.

The algorithm for computing p(x;σ⋆) works as follows. Construct a junction tree T for I , choose an
arbitrary vertex in T to be the root, and direct T accordingly. If Vk is a hypervertex in T , let Dk

be the union of all intervention variables contained in the descendants of Vk in T . Let Bk be the
intersection of the invervention variables contained in Vk with the intervention variables contained
in the parent Vπ(k) of Vk in T .
We define a message from a non-root vertex Vk to its parent Vπ(k) as

mx
k :=

p(x;σ[Dk(⋆)])

p(x;σ[Bk(⋆)])
, (2)

with the update equation

p(x;σ[Dk(⋆)]) ∝ p(x;σ[Fk(⋆)])
∏

Vk′∈ch(k)

mx
k′ , (3)

where the product over ch(k), the children of Vk in T , is defined to be 1 if ch(k) = ∅.

(Proofs are provided in Appendix B.) In particular, if no factor contains more than one intervention
variable, the corresponding σ-graph will be fully disconnected. This happens, e.g, for an IFM derived
from a DAG without hidden variables and where each intervention has one child, as in Fig. 2.

3.2 Algebraic Formulation

If a σ-graph is not decomposable, the usual trick of triangulation prior to clique extraction can be
used [46, 20], at the cost of creating cliques which are larger than the original factors. Alternatively,
and a generalization of Eqs. (2) and (3), we consider transformations of the distributions in P(Σtrain)

7Quick summary: a junction tree is formed by turning the cliques of an undirected graph into the (hy-
per)vertices of the tree. Essential to the definition, a junction tree T must have a running intersection property:
given an intersection S := Hi ∩Hj of any two hypervertices Hi, Hj , all hypervertices in the unique path in
T between Hi and Hj must contain S. This property captures the notion that satisfying local agreements
(“equality of properties” of subsets of elements between two adjacent hypervertices in the tree) should imply
global agreements. A decomposable graph is simply a graph whose cliques can be arranged as a junction tree.
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σ1 σ2 σ3 f00
1 f01

1 f10
1 f11

1 f00
2 f01

2 f10
2 f11

2 f00
3 f01

3 f10
3 f11

3

q1 0 0 0 ✓ ✓ ✓
q2 0 1 0 ✓ ✓ ✓
q3 1 0 0 ✓ ✓ ✓
q4 1 1 0 ✓ ✓ ✓
q5 0 0 1 ✓ ✓ ✓
q6 0 1 1 ✓ ✓ ✓
q7 1 0 1 ✓ ✓ ✓
p⋆ 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1

Figure 4: Example of how to infer the target distribution p
(
x; (1, 1, 1)

)
from the other seven possible

regimes given the postulated factorization p(x;σ) ∝ f1(x;σ1, σ2)f2(x;σ2, σ3)f3(x;σ1, σ3). We
use fab

k as a shorthand notation for fk(x;σk1
= a, σk2

= b), e.g, p
(
x; (1, 1, 1)

)
∝ f11

1 f11
2 f11

3 . For a
PR-transformation (f00

1 f00
2 f00

3 )q1 × (f01
1 f10

2 f00
3 )q2 × · · · × (f10

1 f01
2 f11

3 )q7 f11
1 f11

2 f11
3 up to a mul-

tiplicative constant independent of x, we need to find a solution satisfying: q1 + q5 = 0, q2 + q6 = 0,
. . . , q7 = 1. (In the table, this can be seen by going through each fab

k column and adding up the
corresponding exponents qj when there is a tick in row j; the sum must agree with the corresponding
entry in the final row). A solution is q1 = q4 = q6 = q7 = 1, q2 = q3 = q5 = −1, corresponding to
p(x;σ⋆) ∝

(
p(x;σ1)p(x;σ4)p(x;σ6)p(x;σ7)

)
/
(
p(x;σ2)p(x;σ3)p(x;σ5)

)
.

by products and ratios. We define a PR-transformation of a density set {p(x;σ1), . . . , p(x;σt)} as
any formula

∏t
i=1 p(x;σ

i)qi , for a collection q1, . . . , qt of real numbers.

Theorem 3.2 Let σv
Fk

denote a particular value of σFk
, and let Dk be the domain of σFk

. Given
a collection P(Σtrain) := {p(x;σ1), . . . , p(x;σt)} and a postulated model factorization p(x;σ) ∝∏l

k=1 fk(xSk
;σFk

), a sufficient and almost-everywhere necessary condition for a given p(x;σ⋆) to
be identifiable by PR-transformations of P(Σtrain) is that there exists some solution to the system

∀k ∈ {1, 2, . . . , l},∀σv
Fk
∈ Dk,

 t∑
i=1:σi

Fk
=σv

Fk

qi

 = 1(σ⋆
Fk

= σv
Fk
), (4)

where 1(·) is the indicator function returning 1 or 0 if its argument is true or false, respectively.

The solution to the system gives the PR-transformation. An example is shown in Fig. 4. The main idea
is that, for a fixed x, any factor fk(xSk

;σFk
) can algebraically be interpreted as an arbitrary symbol

indexed by σFk
, say “f

σFk

k ”. This means that any density p(x;σi) is (proportional to) a “squarefree”
monomial mi in those symbols (i.e, products with exponents 0 or 1). We need to manipulate a set of
monomials (the unnormalized densities in P(Σtrain)) into another monomial m⋆ (the unnormalized
p(x;σ⋆)). More generally, the possible set functions g(·), h(·) such that g(m⋆, {m1, . . . ,mt}) =
h({m1, . . . ,mt}), with g(·) invertible in m⋆, suggest that g(·) and h(·) must be the product function
(monomials are closed under products, but not other analytical manipulations), although we stop short
of stating formally the conditions required for PR-transformations to be complete in the space of all
possible functions of P(Σtrain). This would be a stronger claim than Theorem 3.2, which shows that
Eq. (4) is almost-everywhere complete in the space of PR transformations.

The message passing scheme and the algebraic method provide complementary views, with the former
giving a divide-and-conquer perspective that identifies subsystems that can be estimated without
requiring changes from the baseline treatment everywhere else. The algebraic method is more general,
but suggests no hierarchy of simpler problems. These results show that the factorization over X is
unimportant for identifiability, which may be surprising. Appendix C discusses the consequences of
this finding, along with a discussion about requirements on the size of Σtrain.

4 Learning Algorithms

The identification results give a license to choose any estimation method we want if identification is
established — while we must make the assumption of the model factorizing according to a postulated
IFM, we are not required to explicitly use a likelihood function. Theorems 3.1 and 3.2 provide ways
of constructing a target distribution p(x;σ⋆) from products of ratios of densities from P(Σtrain). This
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suggests a plug-in approach for estimation: estimate products of ratios using density ratio estimation
methods and multiply results. However, in practice, we found that fitting a likelihood function directly
often works better than estimating the product of density ratios, even for intractable likelihoods. We
now discuss three strategies for estimating some E[Y ;σ⋆] of interest.

Deep energy-based models and direct regression. The most direct learning algorithm is to first
maximize the sum of log-likelihoods L(θ;D1, . . . ,Dt) :=

∑t
i=1

∑ni

j=1 log pθ(x
i(j);σi), where ni

is the number of samples in the ith regime. The parameterization of the model is indexed by a
vector θ, which defines p(·) as log pθ(x;σ) :=

∑l
k=1 ϕθk,σFk

(xSk
) + constant. Here, ϕθ(·) is a

differentiable black-box function, which in our experiments is a MLP (aka a multilayer perceptron,
or feedforward neural network). Parameter vector θk,σFk

is the collection of weights and biases
of the MLP, a different instance for each factor k and combination of values in σFk

. In principle,
making the parameters smooth functions of σFk

is possible, but in the interest of simplifying the
presentation, we instead use a look-up table for completely independent parameters as indexed by the
possible values of σFk

. Parameter set θ is the union of all
∑l

k=1

∏
j∈Fk

|ℵj |MLP parameter sets. As
maximizing log-likelihood is generally intractable, in our implementation we apply pseudo-likelihood
with discretization of each variable X in a grid. The level of discretization does not affect the
number of parameters, as we take their numerical value as is, renormalizing over the pre-defined
grid. Score matching [38], noise contrastive estimation [32] or other variants (e.g., [71]) could be
used; our pipeline is agnostic to this choice, with further details in Appendix F. We then estimate
fy(x) := E[Y | x] using an off-the-shelf method, which in our case is another MLP. For a given
σ⋆, we sample from the corresponding p(x;σ⋆) with Gibbs sampling and average the results of the
regression estimate f̂y(x) to obtain an estimate µ̂(σ⋆).

Inverse probability weighting (IPW). A more direct method is to reweight each training sample
by the target distribution p(x;σ⋆) to generate µ̂(σi⋆) :=

∑ni

j=1 y
i(j)wi(j)⋆ , where wi(j)⋆ is the

density ratio p(xi(j);σ⋆)/p(xi(j);σi), rescaled such that
∑ni

j=1 w
i(j)⋆ = 1. There are several direct

methods for density ratio estimation [53] that could be combined using the messages/product-ratios
of the previous section, but we found that it was stabler to just take the density ratio of the fitted
models using deep energy-based learning, just like in the previous algorithm. Once estimators
µ̂(σ⋆(1)), . . . , µ̂(σ⋆(t)) are obtained, we combine them by the usual inverse variance weighting
rule, µ̂(σi⋆) :=

∑t
i=1 r

iµσ⋆(i)/
∑t

i=1 r
i, where ri := 1/v̂i, and v̂i :=

∑ni

j=1(y
i(j))2(wi(j)⋆)2. This

method requires neither a model for fy(x) nor Markov chain Monte Carlo. However, it may behave
more erratically than the direct method described above, particularly under strong shifts in distribution.

Covariate shift regression. Finally, a third approach for estimating µ(σ⋆) is to combine models
for fy(x) with density ratios, learning a customized f̂y(x) for each test regime separately. A s this is
very slow and did not appear to be advantageous compared to the direct method, we defer a more
complete description to Appendix E.

Predictive Coverage. Even when treatment effects are identifiable within the IFM framework,
the uncertainty of resulting estimates can vary widely depending on the training data and learning
algorithm. Building on recent work in conformal inference [78, 51, 76], we derive the following
finite sample coverage guarantee for potential outcomes, which requires no extra assumptions beyond
those stated above.

Theorem 4.1 (Predictive Coverage.) Assume the identifiability conditions of Theorems 3.1 or 3.2
hold. Fix a target level α ∈ (0, 1), and let I1, I2 be a random partition of observed regimes intro
training and test sets of size n/2. Fit a model µ̂ using data from I1 and compute conformity
scores s(i) = |yk(i) − µ̂(σk)| using data from I2. For some new test environment σ⋆, compute the
normalized likelihood ratio w(i)(σ⋆) ∝ p(xk(i);σ⋆)/p(xk(i);σk), rescaled to sum to n/2. Let τ̂(σ⋆)
be the qth smallest value in the reweighted empirical distribution

∑
i w

(i)(σ⋆) · δ(s(i)), where δ
denotes the Dirac delta function and q = ⌈(n/2 + 1)(1− α)⌉.
Then for any new sample n+ 1, we have:

P
(
Y ⋆(n+1) ∈ µ̂(σ⋆)± τ̂(σ∗)

)
≥ 1− α.

Moreover, if weighted conformity scores have a continuous joint distribution, then the upper bound
on this probability is 1− α+ 1/(n/2 + 1).
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5 Experiments

We run a number of semi-synthetic experiments to evaluate the performance of the IFM approach on
a range of intervention generalization tasks. In this section, we summarize our experimental set-up
and main results. The code for reproducing all results and figures is available online8; in Appendix G,
we provide a detailed description of the datasets and models; and in Appendix H we present further
analysis and results.

Datasets. Our experiments are based on the following two biomolecular datasets: i) Sachs [66]:
a cellular signaling network with 11 nodes representing phosphorylated proteins and phospho-
lipids, several of which were perturbed with targeted reagents to stimulate or inhibit expression.
There are 4 binary intervention variables. Σtrain has 5 regimes: a baseline, with all σi = 0, and 4
“single-intervention” regimes, each with a different single σi = 1. Σtest consist of the remaining 11
(= 24 − 5) unseen regimes. ii) DREAM [30]: Simulated data based on a known E. coli regulatory
sub-network with 10 nodes. There are 10 binary intervention variables, and (similarly) Σtrain has a
baseline regime, with all σi = 0, and 10 single-intervention regimes, with single choices of σi = 1.
Σtest consists of 45 (10× 9/2 = 45) unseen regimes defined by all pairs σi = σj = 1.

Oracular simulators. The first step to test intervention generalization is to build a set of proper
test beds (i.e., simulators that serve as causal effect oracles for any σ ∈ Σ), motivated by expert
knowledge about the underlying system dynamics. Neither the original Sachs data nor the DREAM
simulator we used provide joint intervention data required in our evaluation. Thus, for each domain,
we trained two ground truth simulators: i) Causal-DAG: a DAG model following the DAG structure
and data provided by the original Sachs et al. and DREAM sources (DAGs shown in Fig. 10(a)) and
Fig. 11(a), respectively). Given the DAG, we fit a model where each conditional distribution is a
heteroskedastic Gaussian with mean and variance parameterized by MLPs (with 10 hidden units)
of the respective parents. ii) Causal-IFMs: the corresponding IFM is obtain by a direct projection
of the postulated DAG factors (as done in, e.g., Fig. 2(b)). The likelihood is a neural energy model
(Section 4) with MLPs with 15 hidden units defining potential functions. After fitting these models,
we compute by Monte Carlo simulation their implied ground truths for every choice of σ∗. The
outcomes Y are then generated under 100 different structural equations of the form tanh(λ⊤X) + ϵ,
with random independent normal weights λ and ϵ ∼ N (0, vy). λ and vy are scaled such that the
ground truth variance of λTX , Var(λTX), is sampled uniformly at random from the interval [0.6, 0.8],
and set vy := 1− Var(λTX).

Compared models. We implement three variants of our proposed IFM model, corresponding to
the three learning algorithms described in Section 4: i) IFM1 uses deep energy-based models and
direct regression; ii) IFM2 uses an IPW estimator; and iii) IFM3 relies on covariate shift regression.
We compare these models to the following benchmarks: i) Black-box: We apply an off-the-shelf
algorithm (XGBoost [14]) to learn a direct mapping from σ to Y without using X . This model does
not exploit any structural assumptions. ii) DAG: We estimate the structural equations in an acyclic
topological ordering that is consistent with the data generating process. The likelihood is defined by
conditional Gaussian models with mean and variances parameterized as MLPs, matching exactly one
of the simulators described below. This gives this competitor much advantage in the benchmarks
generated by DAGs, as following a parametric Gaussian with additive error structure is substantive
information to be exploited.

Results. We evaluate model performance based on the proportional root mean squared error
(pRMSE), defined as the average of the squared difference between the ground truth Y and estimated
Ŷ , with each entry further divided by the ground truth variance of the corresponding Y . Results are
visualized in Fig. 5. We additionally run a series of one-sided binomial tests to determine whether
models significantly outperform the black box baseline, and compare the Spearman’s rank correlation
[80] between expected and observed outcomes for all test regimes. Unsurprisingly, DAGs do best
when the ground truth is a Causal-DAG, while IFM methods do better when the data generator is a
Causal-IFM. Still, some IFMs are robust to both ground truth models, with IFM1 (the deep energy
model) doing especially well on the DREAM dataset, and IFM2 (the IPW estimator) excelling on the
Sachs data.

8https://github.com/rbas-ucl/intgen
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Figure 5: Experimental results on a range of intervention generalization tasks, see text for details.

In particular, for the DREAM datasets, IFM1 (scaled) errors remain stable, while the DAG has a major
loss of performance when a non-DAG ground truth is presented. However, IFM2 underperform on
DREAM datasets, which might be because the knockdowns regimes in those datasets induce dramatic
shifts in distribution overlap among regimes. (We omit results for IFM3 (covariate shift regression) on
these datasets, as the method does not converge in a reasonable time.) Though the black-box method
(XGBoost algorithm and no structural assumption) sometimes struggles to extrapolate, displaying a
long-tailed distribution of errors, it actually does surprisingly well in some experiments, especially
on the DREAM dataset. In fact, the black-box method is essentially indistinguishable from linear
regression in this benchmark (results not shown), which is not surprising given the sparsity of the
training data. However, the non-additivity of the σ effect on Y is more prominent in the Sachs
datasets, making it difficult to generalize without structural assumptions.

6 Related Work

A factor graph interpretation of Pearl’s do-calculus framework is described in [79], but without
addressing the problem of identifiability. More generally, several authors have exploit structural
assumptions to predict the effects of unseen treatments. Much of this research falls under the frame-
work of transportability [61, 7], where the goal is to identify causal estimands from a combination of
observational and experimental data collected under different regimes. If only atomic interventions
are considered, the do-calculus is sound and complete for this task [50]. The σ-calculus introduced by
[28, 17] extends these transportability results to soft interventions [18, 19]. However, these methods
are less clearly defined when an intervention affects several variables simultaneously, and while
DAGs with additive errors have some identifiability [67] and estimation [75] advantages, acyclic
error additivity may not be an appropriate assumption in some domains. Under further parametric
assumptions, causal effects can be imputed with matrix completion techniques [73, 3] or more generic
supervised learning approaches [31], but these methods often require some data to be collected for all
regimes in Σtest. Finally, [2] is the closest related work in terms of goals, factorizing the function
space of each E[Xi;σ] directly as a function of σ.

Another strand of related research pertains to online learning settings. For instance, several works
have shown that causal information can boost convergence rates in multi-armed bandit problems when
dependencies are present between arms [45, 49, 24], even when these structures must themselves
be adaptively learned [9]. This suggests a promising direction for future work, where identification
strategies based on the IFM framework are used to prioritize the search for optimal treatments. Indeed,
combining samples across multiple regimes can be an effective strategy for causal discovery, as
illustrated by recent advances in invariant causal prediction [63, 33, 64, 81], and it can also help with
domain adaptation and covariate shift [54, 6, 13, 15].

7 Conclusion

We introduced the IFM framework for solving intervention generalization tasks. Results from
simulations calibrated by real-world data show that our method successfully predicts outcomes for
novel treatments, providing practitioners with new methods for conducting synthetic experiments.
Future work includes: i) integrating the approach with experimental design, Bayesian optimization
and bandit learning; ii) variations that include pre-treatment variables and generalizations across
heterogeneous subpopulations, inspired by complementary matrix factorization methods such as [2];
iii) tackling sequential treatments; and iv) diagnostics of cross-regime overlap issues [36, 58].
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A A Guide to Structure Elicitation and Learning

This section starts with a discussion particularly aimed at methodologists and practitioners who may
not feel entirely at ease using a factor graph approach to model causality. We then conclude with a
brief discussion on how to build IFMs by knowledge elicitation and structure learning. For further
discussion on the use of alternative independence models in causality, we recommend Section 11 of
[22]. Section 12 of the same paper provides further discussion of the meaning of linking intervention
variables to random variables in statistical modeling and its DAG interpretations.

A.1 Background: Extended Conditional Independence

Our starting point is Dawid’s framework for causal inference [23]. Although dubbed “decision-
theoretical”, no utility optimization is actually necessary to justify its approach for encoding causal
assumptions and deriving their consequences. As such, we will drop the “decision-theoretical” label
and refer to it as the extended conditional independence (ECI) approach, formalized in [16]. The
main point is that causal assumptions, either given in the form of independencies in a mutilated DAG
or in distributions of potential outcomes, can directly be framed as “mere” statements of conditional
independence among random variables and intervention variables.

As the intervention variables σi are not random variables, this calls for a clarification of what it means
to claim

Xi⊥⊥σ1 | Xj , σ2

For what follows, it suffices to interpret this statement as Xi not changing in distribution across
different values of σ1 when σ2 and Xj are fixed/observed at any particular value.

The most basic statement of structure is expressed by a graph X → Y . This graph is intended to
communicate that, if we intervene on X , the distribution of Y may change; but if we intervene on Y ,
the distribution of X does not change. This may feel unsatisfactory, as the graph X → Y by itself
does not communicate any independence constraint.9

The ECI approach is explicit: we take as primitive the notion of “intervention on X” and “intervention
on Y ” operationalized by a pair of intervention variables σx and σy such that

Y ⊥⊥σx | X
X ⊥⊥σy

(5)

The first independence establishes that once I know which value X took, it does not matter how X
came to be (i.e., the value of σx) [22]. This is more commonly described as “lack of unmeasured
confounding between X and Y ” or ignorability.

The second independence establish that how Y comes to be does not change the distribution of
X . This is more commonly described as “Y does not cause X”. Note that the model does not
explicit state that “X causes Y ”, just that it’s allowed to. This mirrors the typical interpretation of a
graphical model, by which a graph does not imply dependencies. Instead, a graph is defined by its
independencies [46].

Now, why do we feel compelled to write the edge X → Y , as in Fig. 6(a), as well as the directions
from (σx, σy) to (X,Y )? This is because, among all “canonical graphical models”10, that’s the only
option that we have. To understand that, consider the three variations in Fig. 6(b)-(d): each one of
them violates one or both of the relations encoded in Eq. (5). That is the sense in which the DAG is
justified here: syntactic sugar for Eq. (5). This is particularly emphasized by Fig. 6(e): if we do not
define σy, the model is defined by the sole constraint Y ⊥⊥σx | X . In that case, a chain graph with
undirected component X − Y suffices (and so does the purely undirected structured). Any arrows
here are for cosmetic purposes.

The same idea applies to conditional ignorability: if we have some set of covariates Z such that
Y ⊥⊥σx | X,Z, this allows us, for instance, to learn causal effects from observational data. That is, if

9The graph may suggest a factorization, and the causal ordering implied by the factorization does matter for
models such as the additive error model [63]. However, since these graphs are primarily models of independence,
something is still amiss here.

10This means the usual machinery of directed, undirected (Markov), mixed and chain graph models [46, 65],
a relatively small but highly interpretable corner in the universe of possible independence models [74].
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Figure 6: The meaning of X → Y . (a) Expressing it when interventions on both X and Y are defined
via variables σx and σy , and we wish to express that Y ⊥⊥σx | X and X ⊥⊥σy . (b)-(d) None of these
graphs respect the two independence constraints on interest. (e) If σy is not defined, a graph like this
one suffices to encode the remaining constraint Y ⊥⊥σx | X .

σx ∈ {“do nothing”, “do(X = 0)”, “do(X = 1)”}, we can obtain p(y | z;σx = do(X = x)) from
observational data as
p(y | z;σx = do(X = x)) = p(y | x, z;σx = do(X = x)) (since do(X = x)⇒ X = x)

= p(y | x, z;σx = do nothing) (since Y ⊥⊥σx | X,Z)
= p(y | x, z) (conventional notation)

The first line exploits a feature of atomic interventions (do(X = x)⇒ X = x) which is not generally
available for other types of intervention. That is why non-atomic interventions cannot directly be
handled by Pearl’s do-calculus [17].

As a further example, average treatment effects can be obtained from the backdoor formula/g-formula
[60, 34], which further requires “Z not to be caused by X”. In the ECI framework11, this is just the
further requirement that σx⊥⊥Z (under the interpretation that σx has “no causes” because it comes
from a hypothetical agent “outside the system that generates the data”, this marginal independence
can only be explained by σx “not causing” Z):

p(y;σx = do(X = x)) =
∑

z p(y | z;σx = do(X = x))p(z;σx = do(X = x))
(standard marginalization)

=
∑

z p(y | x, z;σx = do(X = x))p(z)
(since Z ⊥⊥σx and do(X = x)⇒ X = x)

=
∑

z p(y | x, z;σx = do nothing)p(z)
(since Y ⊥⊥σx | X,Z)

=
∑

z p(y | x, z)p(z)
(conventional notation)

As a matter of fact, the classical axiom of consistency that underpins causal reasoning from potential
outcomes [34] (basically, that the potential outcome of Y under intervention do(X = x) should
match the observed outcome Y if X = x i.e. Yx = Y if X = x) can be interpreted as the lack of
“fat-hand” interventions [27], i.e., that there is some conditioning set C such that σx⊥⊥Y | C for any
random variable Y other than X .

A.2 Graphical Models and the IFM

The above discussion indicates that conditional independencies among intervention variables and
random variables are the building blocks of a (counterfactual-free, or “Rung 2”[62]) causal modeling
language. However, we need more than that for any practical way of encoding assumptions, as
many reasonable models will involve an extremely large number of conditional independencies. For
instance, even a simple directed Markov chain X1 → X2 → · · · → Xp involves a super-exponential
number of conditional independencies (e.g., Xp is conditionally independence of X1 given any
non-empty subset of {X2, . . . , Xp−1}).
Graphical models are extremely useful families of independence models that allow for the use of a
relatively small number of local Markov conditions to describe global Markov conditions. Moreover,

11To be clear, the idea of using explicit intervention variables to describe the backdoor adjustment dates back
at least to the original graphical formulation of [72]. The proof in [60] also relies on explicit regime variables.
ECI formalizes explicitly the role of conditional independence statements that involve non-random variables.

16



when compared to relying on algebra alone, symbolic algorithms based on graph-theoretical concepts
provide ways to derive such implications in a easier and more transparent manner. This explains
the popularity of graphical models in causal modeling, regardless of the cosmetic appeal of drawing
edges.

In what follows, we will start by contrasting undirected (“Markov”) networks to DAGs, as factor
graph models encode the very same families of independencies as undirected graphs (with the extra
facility of representing low-order interactions on top of independence constraints). For instance, in a
DAG, the local Markov condition is a variable being conditional independent of its non-descendants
given its parents; the global Markov condition is anything entailed by d-separation [60, 72]. See [46]
for many classical results.

Creating an independence (graphical) model requires trade-offs, as not every family of condi-
tional independencies can be easily cast in graph-theoretical terms [74]. One common example
is the (chordless) simple cycle of length 4: the independencies encoded in this undirected graph
X1 −X2 −X3 −X4 −X1 cannot be represented by any DAG, even one with the same adjacencies,
such as, X1 → X2 → X3 ← X4 ← X1. (The converse is also true, the independencies encoded by
this “diamond structure” DAG have no correspondence to any undirected graph.) It is out of our
scope to get into any of the fine details of such differences, see [46] for details. Instead, we will focus
on some broad aspects relevant to causal inference.

DAGs (with or without hidden variables) are by far the most common type of graphical model for
expressing causality. There are different ways of explaining this appeal, of which we highlight

“marginal independencies” and “explaining away”.

Marginal Independencies. A connected undirected graph implies no marginal independendencies.
Yet, marginal independencies lie behind the claim that “the future does not cause the past”. This is
illustrated in Fig. 6(a) by interpreting Y as encoding events that happen after the events encoded by
X , and hence an assumption of X ⊥⊥σy is desirable.

Explaining Away. This well-known phenomenon is illustrated by independencies that get destroyed
by conditioning upon further evidence. For example, if X3 = f(X1, X2), then even if X1⊥⊥X2, it
is clear that knowing also the value of X3 will change the support of X1 given X2. More generally,
p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2) means that p(x1, x2) = g(x1)h(x2) for some g(·), h(·),
but p(x1, x2 | x3) ∝ g(x1)h(x2)kx3

(x1, x2) for some kx3
(·, ·) which does not factorize in general.

This also applies to combinations of random variables and intervention variables. If “X does not
cause Z” and we operationalize that by σx⊥⊥Z in the DAG σx → X ← Z, it is possible to have
this independence destroyed by conditioning on X , since p(z | x;σx) will in general be different
if σx is “do nothing” (where Z is allowed to vary with different values of X) compared against
σx = do(X = x) (where Z is independent of X). That is, in this example we have Z ⊥̸⊥ σx | X , in
the sense that p(z | x;σx) is a non-trivial function of σx even if σx⊥⊥Z.

We claim that neither of the two properties above are particularly well-motivated in the snapshot
sampling process illustrated in Figure 1. Given the snapshot, some explaining away could indeed
happen between an intervention variable σ and pre-treatment/“Past” variables (Fig. 1(b)) that happen
to be recorded. However, this can be simply accounted for by including these pre-treatment variables
as conditioning variables within the IFM factors.

For longitudinal studies, where marginal independencies do matter (“the future doesn’t cause the
past”) and we do happen to make multiple snapshots (as opposed to “contemporaneous DAG
structures”, as in [39]), it is not a technical challenge to extent the IFM to a chain graph structure [47]
with factor graph undirected components. We leave this development for future work.

To summarize, if marginal independencies and explaining away are not of particular relevance to the
problem at hand, then we recommend the IFM as a family of independence models, particularly in
light of its very simple local Markov condition (i.e., in the corresponding undirected graph implied
by the factor structure, “a variable is independent of its non-neighbors given its neighbors”). This
comes to life especially in models motivated by equilibrium equations. For instance, consider the
following example from Section 3.1.1 of [11]:

fI : XI − UI = 0
fD : U1(XI −XO) = 0
fP : U2(gU3XD −XP ) = 0
fO : U4(U5IKXP −XO) = 0
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where f denotes differential equations at equilibrium, X denotes observed random variables, U
denotes (mutually independent) latent variables, and I denotes an intervention indicator.

After marginalizing the U variables, we “get” an IFM (although, this is not the whole story, as
other non-graphical constraints may take place given the particular equations. [11] discusses UI

being marginally independent of IK on top of the above). In general, energy-based models are to
be interpreted as conjunctions of soft-constraints, the factor graph is one implication of a system of
stochastic differential equations (SDE), and interventions denote change to particular constraints.

A SDE model can indeed have other assumptions on top of the factorization, and parameters which
carry particular meaningful interpretations. Nonetheless, this fits well with our claims that the IFM
is a “minimalist” family of models in terms of structural assumptions — a reasonably conservative
direction to follow; particularly, when the dynamics of many natural phenomena cannot be (currently)
measured at individual level, as it’s the case of much of cell biology data, and hence writing down
a full SDE model may be more inspirational than scientifically grounded. See [47] for further
elaborations on some of these ideas.

It is worth highlighting that, as long as the timing of the measurements is well-defined and consistently
respected by the real-world sampling procedure, there is no need to wait for a system to get into
equilibrium in order for an IFM to be applicable. [21] discusses how “causal structure” changes
depending on which equations have reached equilibrium at any particular point in time — after all,
the process as a function of time is non-stationary until (and if) it reaches equilibrium. Importantly,
intervention generalization here should not be interpreted as extrapolating to different, unsampled,
time points in a non-stationary process.

Finally, we note that the ECI framework as described by [16] is relatively restricted in the definition
of statements such as

σi⊥⊥σj | Xr, σs,

that is, claims of independence between sets of intervention variables. The focus there is on variation
independence, which roughly speaking can be interpreted as the range of possible values for σi not
depending on σj .12

In contrast, we interpret statements
σi⊥⊥σj | X,σ\ij ,

where σ\ij are all intervention indicators other than σi and σj , by merely linking it to the factorization

p(x;σi, σj , σ\ij) ∝ g(x, σi, σ\ij)h(x, σj , σ\ij),

for some functions g(·) and h(·). Going from pairwise independence to setwise independence is
defined here by the usual graphical criterion of pairwise independence for the product space of the
sets implying setwise independence.

The above does not mean a genuine factorization of p(x;σi, σj , σ\ij) as a function of σ, as the
normalizing constant will in general depend on all regime indicators (but not on the data). It however
denotes the difference between Fig. 2(b) and Fig. 2(c): the latter is a chain graph with an undirected
component that does not suggest factorization over σ1, σ2 and σ3 for any given x, while the factor
graph explicitly encodes that.

A.3 Structure Elicitation and Learning

Having agreed that an intervention factor model is the natural choice under the scenarios described
above, the remaining consideration is: how to extract structural knowledge from an expert or
algorithm.

Simply put, removing edges from σ to X (or among X) should be business as usual once we
understand that structure follows from conditional independencies among random variables and
regime indicators, with the global Markov condition being that of a factor graph model. An expert
who is ready to answer conditional ignorability questions of the type Y ⊥⊥σx | X,Z, and/or plain

12As it would not be the case, for instance, if a choice of σj corresponds to removing a condition or resource
required for carrying out an action encoded by some values of σi. This happens, for example, in resource
allocation problems, where σi and σj correspond to resource allocation decisions limited by some budget
constraint.
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consistency-like questions to judge whether σx⊥⊥Y | C for some C and Y ̸= X , should have no
qualms about answering general questions for interventions that don’t have a particular single-variable
target. In particular, the notion of “removing edges” from σ to X (that is, forbidding any factor to
include particular combinations of intervention and random variables) should follow from knowledge
about the domain. Indeed, impossibility of some direct connections is presented in all sorts of systems,
from physical ones (including spatial systems [5]) to social ones (e.g., [59]).

Independencies of the type σi⊥⊥σj | X,σ\ij are better understood as the lack of particular interac-
tions. Non-linear multivariate models such as log-linear models have for long been understood as
defining hierarchies of interactions within the allowed probabilistic dependencies [10]. Likewise,
analysis of variance (ANOVA) is predicated on the idea that lower-order interactions can suffice
to model a variety of empirical phenomena. Judging whether a set of random variables (“soft con-
straint”) should be regulated by interactions of particular intervention variables, conditional on all
other variables, is knowledge akin to judging interactions in ANOVA or log-linear models, and it
has a long tradition in multivariate analysis, dating back at least to the work of Ising on statistical
mechanics [56].

However, none of that is to say that the work of structure elicitation is straightforward; it is definitely
not. With this in mind, we now conclude this section with broad ideas on structure learning for IFMs.
Indeed, structure learning can aid the process of structure elicitation. An early method for structure
learning of probabilistic factor graph models is described by [1], and it is our intent to provide a fully
detailed account of structure learning for IFMs in future work.

There is a close link between classical DAG learning algorithms and algorithms for undirected models,
using variants of the faithfulness assumption [72]. In particular, akin to the initial stage of the PC
algorithm [72], we can start with a fully connected undirected graph and remove edges, creating a
factor graph model out of the cliques remaining after a step that removes edges.

We can remove edges between random variables and edges between random variables and intervention
variables, by querying an independence oracle under a particular regime σ0, which we assume all
other regimes should be faithful to. For instance, this takes place when σ0 is an “observational regime”
as defined by an unperturbed system, and any independence among random variables is assumed be
carried over to other regimes. Likewise, varying one entry in σ and assessing (conditional) equality
in distribution for particular random variables will remove undirected edges between σ and X by
assuming that they are also be unnecessary under any other configuration of the unchanged variables.

Finally, we note that edges “within” σ variables, and interactions in general, are less straightforward
to deal with. For any clique remaining in the current undirected graph, one possibility is to test
whether the distribution of this clique given all other variables provides the same goodness-of-fit (by
statistical significance) with or without particular interactions. Statistical power may be an issue, see
[68] for a discussion on nonparametric testing of three-way interactions. An alternative is to adopt a
blanket assumption to remove higher-order interactions if there is no evidence against lower-order
interactions across models fit separately in each of the Di datasets collected.
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B Proofs of Identifiability and Further Examples

This section presents results concerning Theorems 3.1 and 3.2. We start with some background with
textbook definitions, followed by proofs and examples for the decomposable graph, and concluding
with proofs for the purely algebraic case. In particular, the decomposable case sheds light on how
to hierarchically structure products and ratios of P(Σtrain). Among other uses, this theoretically
suggests which regimes could be added to Σtrain in order to reduce the estimation error coming from
particular product/ratios that are required to identify larger marginal distributions.

Background. A decomposition of an undirected graph G is formed from a partition of its vertices
into a triplet (A,B,C) where C is a complete subgraph (i.e., a clique) and separates A from B. The
decomposition is called proper if both A and B are non-empty. Moreover, an undirected graph G
is called decomposable if it is complete or, failing that, it has a proper decomposition into a triplet
(A,B,C), where the subgraph of G with vertices A ∪B and the subgraph with vertices B ∪ C are
both decomposable.

A junction tree T of a decomposable graph G is a tree where each vertex Vi is labeled with the
elements of a unique maximal clique from G (hence, this type of vertex is sometimes called a
hypervertex), so that Vi ∩ Vj denotes the corresponding intersection among sets of vertices in G.
Edges Vi − Vj of T are graphically represented with labels denoting the intersection Vi ∩ Vj (hence,
these edges are also sometimes called hyperedges). A junction tree must have a running intersection
property: any intersection Vi ∩ Vj must be contained in all vertices in the (unique) path between Vi

and Vj in T .

If Gσ(I) is decomposable, there exists at least one junction tree compatible with it. Let T be one of
them. Without loss of generality, pick an arbitrary vertex of T to be the root and direct edges away
from it to create a directed tree out of the junction tree, so that we can assume T to be directed. We
will prove identifiability by an induction argument that starts at the leaves of the directed junction
tree, moving towards the (unique) parent of any particular vertex child in the induction step.

Definitions and notation. In what follows, we use Vk to denote a vertex in T . By abuse of notation,
depending on context, Vk is also used to denote the corresponding intervention variables σFk

in the
original factor graph.

Let σ[Z(w)] be a particular instantiation of σ, where Z ⊆ [d] and σZ = w (possibly a vector), with
the remaining entries of σ being zero. For instance, if d = 3, Z = {2, 3}, and w = (2, 1), then
σ[Z(w)] = (0, 2, 1). To avoid subsequently heavy notation, from this point on we will use σ[Z(⋆)] to
denote σ[Z(σ⋆

Z)], that is, the vector of assignments that we obtain by setting to zero all entries of σ⋆

which are not in Z.

We use ch(k) to denote the set of children of vertex Vk in T , and Vπ(k) to denote its (unique) parent,
if Vk is not the root vertex. Also, let Dk denote the union of the intervention variables contained in at
least one descendant of Vk in T , remembering that by convention Vk is also a descendant of itself.
Finally, let Bk := Dk ∩ Vπ(k), the set of intervention variables common to both Dk and Vπ(k). This
means that, by the running intersection property of junction trees, Bk separates Ak := Dk\Bk from
the rest of σ in the σ-graph Gσ(I).

Proof of Theorem 3.1. To simplify the proof, assume without loss of generality that no entry in σ⋆

is zero. To see this, if σ⋆
i = 0, consider the factors k containing σi as being constants in σi, with scope

Sk being redefined as Sk′ := Sk\{σi}. Σtrain in this redefined space still satisfies the assumption
of having entries spanning all possible values for σSk′ while holding the remaining intervention
variables at the background level of 0. Likewise, as identifiability will be shown pointwise for a given
σ⋆ (where the categorical labels for the intervention values are arbitrary symbols), we can assume all
entries σ⋆

i as being equal, and equal to 1.

We define a message from vertex Vk to its parent Vπ(k) as

mx
k :=

p(x;σ[Dk(⋆)])

p(x;σ[Bk(⋆)])
, (6)
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and state that
p(x;σ[Dk(⋆)]) ∝ p(x;σ[Fk(⋆)])

∏
Vk′∈ch(k)

mx
k′ , (7)

with the product over ch(k) defined to be 1 if ch(k) = ∅.
We will show how Eq. (6) can be recursively identified from a message scheduling that starts from
the leaves and propagates messages towards the root of T . We will also show how Eq. (7) holds.

Let Vk be a leaf of T . Then Dk = Fk and p(x;σ[Fk(⋆)]) is identified as it is part of Σtrain, showing
that Eq. (7) holds for the leaf vertices of T . Likewise, message mx

k is identifiable for leaf vertices, as
both Dk and Bk are contained in Fk.

Let Vk now be an internal vertex of T , and assume that Equations (6) and (7) are identified for all
of its proper descendants. As all entries of σ⋆ are assumed to be 1, it will be useful to define gk :=
fk(x;σFk

= 1). Also define hk := fk(x;σFk∩Bk
= 1, σFk\Bk

= 0) and zk := fk(x;σFk
= 0).

Since T is a junction tree, Dk can be partitioned into sets Dk′ , where Vk′ ∈ ch(k), or otherwise there
would be a violation of the running intersection property. Let Q(k′) be the set of all indices of factors
q where Fq ⊆ Dk′ . Let

Qk′ :=
∏

q∈Q(k′)

gq
hq

.

We can multiply and divide Qk′ by the product of all factors zq , where Fq ∩Dk′ = ∅. This implies

Qk′ ∝ p(x;σ[Dk′ (⋆)])

p(x;σ[Bk′ (⋆)])
= mx

k′ .

Moreover, the product∏
q:Fq∩Dk=∅ zq∏
q:Fq∩Dk=∅ zq

× fk(x;σFk
= 1)

fk(x;σFk
= 1)

×
fπ(k)(x;σBk

= 1, σFπ(k)\Bk
= 0)

fπ(k)(x;σBk
= 1, σFπ(k)\Bk

= 0)
×

∏
k′:Vk′∈ch(k)

Qk′

is such that the numerator is proportional to p(x;σ[Dk(⋆)]) and the denominator is proportional to
p(x;σ[Fk(⋆)]). To see this, note that the numerator sets the σFj

variables for all factors Fj in a
coherent way such that entries in Dk are set to 1 while everything else is set to zero (entries in Dk

may still appear in Vπ(k), as Dk ∩ Fπ(k) = Bk, is possibly non-empty. Hence, we set to 1 those
entries in Fπ(k) which are in Bk, explaining the appearance of the fπ(k) factors in the expression
above).

This implies
p(x;σ[Dk(⋆)])

p(x;σ[Fk(⋆)])
∝

∏
Vk′∈ch(k)

mx
k′ ,

from which Eq. (7) follows from quantities previously identified, and as such it identifies
p(x;σ[Dk(⋆)]).

To build message mx
k , all that remains is p(x;σ[Bk(⋆)]). However, Bk ⊆ Fk, and since Σtrain contains

the distribution p(x;σ[Hk(⋆)]) for all Hk ⊆ Fk, this is also identified. The required identifiability of
p(x;σ⋆) follows from propagating these messages all the way up to the root of T . □

Example. We now solve the example shown in Figures 7–9. The IFM itself is given by
p(x;σ) ∝ f1(x;σ1, σ2)f2(x;σ2, σ3)f3(x;σ2, σ5)f4(x;σ3, σ4)f5(x;σ4, σ6)f6(x;σ6, σ7)f7(x;σ4, σ8),

where all intervention variables are binary, and we our goal is to generate the test regime where
all intervention variables are set to 1, i.e., σ1 = σ2 = · · · = σ8 = 1. For reference, this means
considering the following sets implied by the factorization above:

F1 = {1, 2} D1 = {1, 2} B1 = {2}
F2 = {2, 3} D2 = {1, 2, 3, 5} B2 = {3}
F3 = {2, 5} D3 = {2, 5} B3 = {2}
F4 = {3, 4} D4 = {1, 2, 3, 4, 5, 6, 7, 8} B4 = ∅
F5 = {4, 6} D5 = {4, 6, 7, 8} B5 = {4}
F6 = {6, 7} D6 = {6, 7} B6 = {6}
F7 = {4, 8} D7 = {4, 8} B7 = {4}
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To illustrate how message passing will work in this example, let’s introduce some symbols so
that the steps are easier to follow. Let g11ij represent a factor with σi = σj = 1. For instance,
g1112 = f1(x;σ1 = 1, σ2 = 1). This is slightly redundant compared to the notion in the proof (which
uses “g1” to denote f1(x;σ1 = 1, σ2 = 1)), but the redundancy of the superscripts will hopefully
make it easier to visualize the logic in the steps that follow.

Likewise, let h01
ij and h10

ij denote assignments (σi, σj) = (0, 1) and (σi, σj) = (1, 0), respectively.
Finally, let z00ij denote the respective factor with assignment σi = σj = 0.

We will use expressions such as p(x; [ij]) to denote p(x;σi = 1, σj = 1, σ1:8\{i,j} = 0) to make the
notation simpler.

The messages at the leaves are

mx
1 = p(x; [12])/p(x; [2]) (D1 = {1, 2}, B1 = {2})

mx
3 = p(x; [25])/p(x; [2]) (D3 = {2, 5}, B3 = {2})

mx
6 = p(x; [67])/p(x; [6]) (D6 = {6, 7}, B6 = {6})

mx
7 = p(x; [48])/p(x; [4]) (D7 = {4, 8}, B7 = {4})

It can be readily verified that all of these are identifiable from Σtrain, as all non-zero assignments are
contained within some factor.

Now, let’s pass messages to (2, 3) using formula (7). To see how it is applicable, start from

mx
1 ×mx

3 =
p(x; [12])

p(x; [2])

p(x; [25])

p(x; [2])

∝ g1112h
10
23h

10
25z

00
34z

00
46z

00
67z

00
48

h01
12h

10
23h

10
25z

00
34z

00
46z

00
67z

00
48

× h01
12h

10
23g

11
25z

00
34z

00
46z

00
67z

00
48

h01
12h

10
23h

10
25z

00
34z

00
46z

00
67z

00
48

Now, we multiply and divide it by the factor of (2, 3) and its parent (3, 4) evaluated at (σ2, σ3, σ4) =
(1, 1, 0), and reorganize the numerator and denominator:

mx
1 ×mx

3 =
p(x; [12])

p(x; [2])

p(x; [25])

p(x; [2])

∝ g1112ZZh
10
23
ZZh
10
25
ZZz
00
34
ZZz
00
46
ZZz
00
67
ZZz
00
48

h01
12
ZZh
10
23
ZZh
10
25
ZZz
00
34
ZZz
00
46
ZZz
00
67
ZZz
00
48

×
ZZh
01
12
ZZh
10
23g

11
25
ZZz
00
34z

00
46z

00
67z

00
48

ZZh
01
12
ZZh
10
23h

10
25
ZZz
00
34z

00
46z

00
67z

00
48

× g1123
g1123
× h10

34

h10
34

=
g1112g

11
23g

11
25h

10
34z

00
46z

00
67z

00
48

h01
12g

11
23h

10
25h

10
34z

00
46z

00
67z

00
48

∝ p(x; [1235]

p(x; [23])
.

As p(x; [23]), mx
1 and mx

3 have been previously identified, from the above we get the update for
p(x; [1235]) per Eq. (7), pointing out that indeed D2 = {1, 2, 3, 5} and F2 = {2, 3}.
To construct the message mx

2 the factor (2, 3) needs to pass to its own parent (3, 4), we also need
the corresponding p(x;σ[B2(⋆)]), which in the example notation is p(x; [3]). But as B2 = {3} is
contained in F2 = {2, 3}, and this will be the case for all (Bk, Fk) pairs, by assumption Σtrain will
contain p(x; [3]). Therefore, we identified mx

2 .

The steps for (4, 6) and (3, 4) follow identical, if somewhat tedious, reasoning.
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Figure 7: The factor graph used as an illustration of the technique in the proof of Theorem 3.1.
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Figure 8: The σ-graph corresponding to the factor graph in Figure 7.

(1, 2) (2, 5) (6, 7)(6, 7) (4, 8)

2 2 6 4

(2, 3) (4, 6)

3 4

(3, 4)

Figure 9: A (directed) junction tree corresponding to the undirected graph in Figure 8.

Proof of Theorem 3.2. Sufficiency follows immediately from the fact that, under Eq (4) being
satisfied, the PR-transformation

∏t
i=1 p(x;σ

i)qi is equivalent to

l∏
k=1

∏
σv
Fk

∈Dk

fk(xSk
;σv

Fk
)

∑t

i=1:σi
Fk

=σv
Fk

qi
=

l∏
k=1

fk(xSk
;σ⋆

Fk
) ∝ p(x;σ⋆), (8)

for all x.

For almost-everywhere necessity, let zkv := log fk(xSk
;σv

Fk
). Taking the logarithm on both sides of

the equality in Eq. (8), we have

l∑
k=1

∑
σv
Fk

∈Dk

zkv

 t∑
i=1:σi

Fk
=σv

Fk

qi

 =

l∑
k=1

zk⋆ ,
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which implies

l∑
k=1

zk⋆

 t∑
i=1:σi

Fk
=σ⋆

Fk

qi

+

l∑
k=1

∑
σv
Fk

∈Dk\{⋆}

zkv

 t∑
i=1:σi

Fk
=σv

Fk

qi

 = 0.

As no zk⋆ appears in the second term of the expression above, the only way for this equality to
hold without {q1, . . . , qt} satisfying Eq. (4) is if constrains tie together the different zk⋆ . For any
reasonable continuous measure by which the parameters of such functions are free to be chosen from
(say, as draws of a multivariate Gaussian), this will be a set of measure zero. □

Discussion. As a corollary it is implied that, similar to the conditions of Theorem 3.1, we need to
have at least one train condition σi for every possible combination of σFk

, for each Fk. To see why,
imagine if the example of Figure 4 we did not have condition 4, that is, (σ1, σ2, σ3) = (1, 1, 0) is left
out. This means that there is nothing to be added in the column f11

1 , and the sum
∑t

i=1:σi
F1

=(1,1) qi
evaluates to 0, implying 0 = 1.

C More on Elicitation, Testability and Experimental Design

As mentioned before, the main result shows that the factorization over X is unimportant for iden-
tifiability, which may be surprising. However, it is important to remember that identifiability and
testability are two different concepts. While Figure 2(b) has testable implications of conditional
independence, testing factorizations may require more intervention levels than the minimal set implied
by Theorem 3.1. In particular, if we have a model p(x;σ) ∝

∏l
k=1 fk(xk;σk), we may be able to

identify the model by singleton experiments spanning the range of each σi individually, however, this
does not mean we can falsify this factorization with just this data.

In general, our advice for graph construction is akin to any causal modeling exercise: apply indepen-
dence constraint tests and interaction tests where applicable (see [68] for an example of nonparametric
three-way interaction test), but untestable conditions (under the available data) can be used if there is a
sensible theoretical justification for it. This means expert assessment of the lack of direct dependency
between an intervention variable and particular random variables, and of the split of σ into sets Fk

from postulated lack of interactions among intervention variables when causing particular random
variables. Although not necessarily always the case, we anticipate that in general this exercise will
imply a factorization over the random variables too.

Also of interest is understanding which minimal size Σtrain should have in order to identify a
particular test regime. This is straightforward to answer in the decomposable case: simply ensure that
the regimes used in the messages of the message passing scheme are available in the training set. A
simple iterative algorithm can list the required messages for a target regime σ⋆. For example, with
binary treatments, a σ-graph without any edges (no interaction of intervention variables in a same
factor), and the goal of identifying all combinations of interventions, this is simply d+ 1, where d is
the number of intervention variables (this follows from having the baseline regime plus one regime
where a single intervention variable is set to 1).

For non-decomposable graphs, we can triangulate the corresponding σ-graph and run the same
procedure defined for decomposable graphs to provide an upper bound on number of training
conditions and a superset of conditions. We can run a greedy procedure to iteratively remove
redundant entries in Σtrain by proposing candidate training regimes to be removed and testing
whether the PR condition for the regime σ⋆ of interest is still satisfied.

What if the cardinality ℵi of some σi is very high? Without smoothness assumptions, getting a
reasonable dose-response pattern with few evaluations of σi is clearly impossible regardless of any
method — this is true even for a single intervention variable in the [0, 1] interval where (say) p(x;σ)
jumps arbitrarily as we sweep the values of σ in [0, 1]. With smoothness assumptions, we can simply
elicit a grid of values for the intervention variables, ask conditions for the identifiability of those, and
fill up the remaining potential functions/expected outcome values of interest via whatever smoothing
procedure we deem appropriate (from potential functions which are smooth functions of σ or via
partial identification procedures, see e.g. [35]). There is no free lunch.
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D Proof of Predictive Coverage Result

Proof of Theorem 4.1. Vovk et al. [78] introduced a distribution-free procedure for computing
prediction intervals with guaranteed finite sample coverage, under the assumption that training and
test data are exchangeable. Lei et al. [51] proposed a more computationally tractable version that
they called the “split conformal” method, and derived a novel upper bound on conformal coverage.
We review some fundamental results.

Consider the regression setting with X ∈ X ⊆ Rd and Y ∈ Y ⊆ R. We partition the data into equal-
sized subsets I1, I2, using the former for model training and the latter for computing conformity
scores. For instance, we may fit a model f̂(x) to estimate E[Y | x] using samples from I1 and
consider the score function s(i) = |y(i) − f̂(x(i))| for i ∈ I2. Let τ̂ be the qth smallest value in
S, with q = ⌈(n/2 + 1)(1− α)⌉. Define Ĉ(x) = f̂(x)± τ̂ . (We assume symmetric errors for
convenience; the result can easily be modified by invoking the appropriate quantiles of the residual
distribution.)

Theorem D.1 (Split conformal inference [51].) Fix a target level α ∈ (0, 1). If (x(i), y(i)), i ∈ [n],
are exchangeable, then for any new n+ 1 from the same distribution:

P
(
Y (n+1) ∈ Ĉ(X(n+1))

)
≥ 1− α.

Moreover, if scores have a continuous joint distribution, then the upper bound on this probability is
1− α+ 2/(n+ 2).

Tibshirani et al. [76] extend this result beyond exchangeable data by introducing the notion of
weighted exchangeability. We call random variables V1, . . . , Vn weighted exchangeable, with weight
functions w1, . . . , wn, if their joint density can be factorized as:

f(v1, . . . , vn) =

n∏
i=1

wi(vi) · g(v1, . . . , vn),

where g does not depend on the ordering of its inputs, i.e., g is permutation invariant. This entails the
following lemma.

Lemma D.2 (Weighted exchangeability [76].) Let Zi ∼ Pi, i ∈ [n], be independent draws, where
each Pi is absolutely continuous with respect to P1, for i ≥ 2. Then Z1, . . . , Zn are weighted
exchangeable, with weight functions w1 = 1 and wi = dPi/dP1, i ≥ 2.

This allows us to generalize the conformal guarantee to weighted exchangeable distributions. Let
w̃(i)(x) denote a rescaled version of the weight function, such that weights sum to n. The original
paper does not use the split conformal approach, but we adapt the result below. First, we reweight the
empirical scores to create the new distribution

∑
i w̃

(i)(x) · δ(s)(i), where δ denotes the Dirac delta
function. Now, let τ̂(x) be the qth smallest value in

∑
i w̃

(i)(x) · δ(s)(i), with q defined as above.
Then, we construct the weighted conformal band Ĉw(x) = f̂(x)± τ̂(x) for all x ̸∈ I1.

Theorem D.3 (Split weighted conformal inference [76].) Fix a target level α ∈ (0, 1).
If (x(i), y(i)), are weighted exchangeable with weight functions w(i), i ∈ [n], then for any new n+ 1:

P
(
Y (n+1) ∈ Ĉw(X

(n+1))
)
≥ 1− α.

Moreover, if scores have a continuous joint distribution, then the upper bound on this probability is
1− α+ 2/(n+ 2).

Our case is somewhat trickier, as we do not have access to data X from the unobserved environment σ⋆

and our regime variables are not random, so ratios such as p(σa)/p(σb) are undefined. However, we
can use a similar reweighting strategy based on likelihood ratios of the form p(xk(i);σ⋆)/p(xk(i);σk)
to ensure that conformity scores satisfy weighted exchangeability with respect to any target regime.
This works because we observe the mediators x for each conformity score s, and assume identifiability
of the relevant likelihood ratios via previous Theorems 3.1 and/or 3.2. Thus our conformal bands
are functions of σ, not X , and our result is simply a special case of the split weighted conformal
inference theorem. □
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E Covariate Shift Method

As IPW may have large variance, one alternative is to use covariate shift regression [53]. In particular,
for each test regime σ⋆, we provide a customize estimate of fy(x) := E[Y |X].

As before, we combine data from all training regimes D1, . . . ,Dt, but reweighting then according to
(the estimated) p(x;σ⋆). We propose minimizing the following objective function,

Ly(θy) :=

t∑
i=1

ni∑
j=1

(yij − fy(x
ij ; θy))

2wij⋆ ,

where wij⋆ is an estimate of p(xij ;σ⋆)/p(xij ;σi), and all the training data regimes are weighted
equally given that

∑n
j=1 w

ij⋆ = 1 for all i. As done with the IPW method, this ratio is taken directly
from the likelihood function of the deep energy-based model we described for the direct method.

When generating an estimate µ̂σ⋆ , we just apply the same idea as in the direct method, where samples
from the estimated p(x;σ⋆) are generated by Gibbs sampling, so that we average fy(x; θ̂y) over these
samples.

As we are averaging over fy(X) instead of considering predictions at each realization of X , the
main motivation for covariate shift here is to improve on IPW by substituting the use of Y ij as the
empirical plug-in estimate of E[Y ij | xij ] with a smoothed version of it given by a shared learned
fy(X

ij ; θy).

However, in our experiments, this covariate shift method was far too slow when considering the cost
over the entire Σtest (as expected, given that the output model is fitted again for every test regime)
and did not show concrete advantages compared to the direct method.

F Pseudolikelihood Method

The pseudo-loglikelihood function pL(θ;D1, . . . ,Dt) is given by

pL(θ;D1, . . . ,Dt) :=

t∑
i=1

ni∑
j=1

m∑
r=1

log pθ(x
i(j)
r | xi(j)

\r ;σi),

where x
i(j)
r is the r-th variable of the j-th data point in dataset Di, with ni being the number of data

points in Di. Vector xi(j)
\r for the same data point is composed of all other random variables but the

r-th variable.

The log-conditional distribution log pθ(x
i(j)
r | xi(j)

\r ;σi) is given by

log pθ(x
i(j)
k | xi(j)

\k ;σi) =

l∑
k=1

ϕk,σFk
(x

i(j)
Sk

)− log

∑
x′
r

exp

(
k∑

k=1

ϕk,σFk
(x′i(j)

Sk
)

) ,

where the second term on the right-hand side is the log-normalizing constant summing all possible
values x′

r of the r-th random variable. Here, x′i(j)
Sk

is the vector obtained by substituting the value of
xk within data point j of dataset i with x′

k, prior to selecting the subvector corresponding to Sk.

The above assumes that all variables are discrete. As described in the main text, we discretize our
variables in an uniform grid, preserving the magnitude information. The parameterization θ is the
same regardless of the number of discretization levels, so that this number is chosen basically by the
computational considerations of performing the sum over x′

k in the log-normalizing constant. Finer
discretizations preserve more information but increase this cost.
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G Experimental Details

In this section, we present further experimental details for Section 5, including the full setup for the
datasets (Sachs and DREAM), the oracular simulators (Causal-DAG and Causal-IFM) that generate
the ground-truth X and Y , and the training procedures we used in the experiments.

G.1 Datasets

Sachs (et al.) dataset. The original Sachs et al. study [66] consisted of 14 different datasets
collected under different compound perturbations in single-cell systems measured by 11 protein/lipid
concentrations. Perturbations can be described in terms of binary intervention variables, labeled by
the associated compound. For instance, condition pma describes the introduction or not of phorbol
12-myristate 13-acetate. Among all perturbations, pma and b2camp are entangled with cd3cd28 (this
means, for instance, that pma = 1 or b2camp = 1 imply cd3cd28off = 1). Hence, we ignore these
two experimental setups, and all remaining datasets are collected under cd3cd28 = 1 so that it can be
considered as an implicit condition not modeled explicitly with a separate intervention variable.

Other conditions implying unresolved entanglements were not considered, in particular the uses
of icam-2 and ly294002. The remaining datasets are listed in Table 1. Assumptions about each
intervention targeting a single protein in the network are taken from [66]. In summary, the original
Sachs et al. data used to train the simulator contains samples from 5 (1 “baseline” plus 4 “perturbed”)
different regimes, and each data sample has 11 variables.

Since each intervention is considered as a binary value (0 for no perturbation and 1 for perturbation),
this gives us a total of 24 = 16 combinatorial possibilities, with 5 in Σtrain. Hence, we need a way of
establishing a (synthetic) ground truth for the 16− 5 = 11 possible test conditions, which we explain
in Section G.2.

DREAM dataset. The DREAM challenges include a series of problems for causal inference in
protein networks [30]. We generate data based on a known E. coli sub-network with 10 nodes,
and consider that each random variable Xi has a corresponding interventional variable σi. We
use the GeneNetWeaver simulator13 to generate this data, under "InSilicoSize10-Ecoli1" from the
"DREAM3_In-Silico_Size_10" task and there is no further data selection process as in the Sachs case.
The simulation is based on a series of predefined ODEs and SDEs. For each data regime, a single
data sample is collected with a random seed initialization with an otherwise exact similar simulation
setting for that particular regime. Following [77], we gather the data sample once it reaches its
equilibrium state and repeat this process as many times as the sample size is required. In summary,
this provides us with a dataset consisting of 11 (1 baseline plus 10 perturbation) regimes. As we are
interested in combinations of 10 binary indicator variables σi, not directly provided in the original
DREAM simulator, we had to create our own ground-truth synthetic model based on samples from
the 11 regimes we can obtain from DREAM.

Table 1: Details for the Sachs et al. datasets used for our first batch of intervention generalization
experiments. Data files can be downloaded from the website of the original reference [66], with the
name described below. Column Target X node describes the theoretical direct connection (as given
by [66]) between the perturbation and 11-dimensional system described by a vector of 11 random
variables X , with condition cd3cd28 always present and affecting all variables, and hence interpreted
as a targeting none. As described in Section G.2, we encode each regime as a 11-dimensional binary
vector, and display them in the last column. A Julia notebook exemplifying the pre-processing of
this data and a Julia script outlining a complete pipeline of batch simulated experiments comparing
methods is provided in the supplementary material.

File name Target X Node Data Regime Corresponding σ
cd3cd28.xls None (background condition) Regime 0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
cd3cd28+aktinhib.xls Variable 7 Regime 1 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
cd3cd28+g0076.xls Variable 9 Regime 2 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
cd3cd28+psitect.xls Variable 4 Regime 3 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
cd3cd28+u0126.xls Variable 2 Regime 4 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

13https://gnw.sourceforge.net
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G.2 Oracular Simulators

Both Sachs and DREAM come with a ground truth DAG (either defined by expert domain knowledge
or motivated by physical systems dynamics). We used each of the DAGs to construct the associated
IFMs. To further explain: in a DAG, the joint probability distribution can be factorized based on the
local Markov condition [46], where a single factor is defined by a vertex and its parents; this suggests
are least one IFM, with the factorization following from interpreting each child-parents factor as a
black-box (i.e., not normalized by the child) positive function of these variables. Graphically, this
is known as the moralization step of “marrying the parents” followed by the dropping of directions
in order to create an undirected Markov network [46]. We use this to define a factor graph model
without stating that this would be the best representation for the corresponding data. It relaxes the
DAG assumption (i.e., it removes some of the independence constraints encoded in the DAG) and
could be refined by adding other constraints (such as breaking the factors into products of reduced
sets of variables), which we do not attempt. See Figure 10 for an example with the Sachs et al. model.
Approaches such as [1] could be used to refine this structure, if so desired.

Given two theoretical constructions and the respective parameterizations they use, this suggests two
ways of building ground-truth simulator models to generate ground truth data X , which we now
explain.

Common to both ground-truth simulators is the fitting of a postulated causal structure to real data
(either Sachs or DREAM). Prior to fitting, we scale the data of each study so that the respecive
“merged empirical distributions”, defined by taking the union of all respective datasets collected under
all available training regimes, have empirical mean of zero and empirical variance of 1 for each
measured random variable. This does not mean any given variable in any given training regime will
have zero empirical mean and unit variance, but pragmatically it helps to control having variables
with disparate scales. For the Sachs data, we also take the logarithm of each random variable prior to
standardization.

G.2.1 Causal DAG Ground-Truth

The first ground-truth simulator is implied by the respective causal DAG model. The DAG for each
study are shown in Figures 10(a) and 11(a). The factorization comes from the structure of the DAG
and can be rewritten as follows:

p(x;σ) =

l∏
k=1

p(xk | pa(xk);σFk
), (9)

where, l is the total number of random variables, p(xk | pa(xk);σFk
) is the conditional density

function for xk, σFk
is the regime indicator subvector for the intervention variables which are parents

of xk in the DAG, and Pa(xk) refers to the random variables which are parents of xk.

For parameterizing the causal DAG model family, we assume a heteroscedastic conditionally Gaussian
formulation. This can be represented by the equation

Xk = fk(pa(Xk), σk) + gk(pa(Xk), σk)× ϵk, ϵk ∼ N (0, 1).

Here, each fk and gk are multilayer perceptrons (MLPs) with 10 hidden units and the role of σk is
just a switch: for each value of σk, we pick one independent set of parameters for the MLP mapping
pa(Xk) to the real line. To learn the parameters in functions fk and gk, maximum likelihood is used.
Further details are provided in the companion Julia code.
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Figure 10: Causal structures used for building the synthetic ground-truth models for the Sachs et al.
[66] data. The name of the random variables are CD3CD28off , ICAM -2, Akt-inhibitor, G0076,
Psitectorigenin, U0126, LY 294002, PMA, B2camp, with more details given in the companion
Julia notebook. (a) A directed acyclic graph (DAG) for the Sachs et al. process, with intervention
vertices representing intervention variables. (b) The interventional factor graph, inspired by the DAG,
which we use in our synthetic ground-truth simulator. This is done by creating a factor for each child
and parent set from the postulated DAG. These independence models are not equivalent. The point is
not to provide an exact model, but to build a synthetic ground truth with parameters calibrated by real
data instead of arbitrarily sampled, and with independence constraints and factorizations that do not
contradict a given expert assessment (as the factor graph contains fewer independence assumptions
than the DAG, not more).

G.2.2 IFM Ground-Truth

The second simulator is the causal IFM. The factorization comes from the structure of the DAG,
using the moralization criterion described in the previous section. Figures 10(b) and 11(b) show the
respective IFM graph structure. This results in the following factorization form:

p(x;σ) ∝
l∏

k=1

fk(x{k} ∪ pa(xk);σFk
), (10)

where pa(xk) comes from the respective theoretical causal DAG case, with Fk given accordingly by
k.

To learn the causal IFM simulator, we use pseudo-likelihood and assign each factor again to a
black-box MLP of 15 hidden units where the corresponding σFk

is a switch between independent
sets of parameters within each factor. We additionally perform a discretization step for variable Xi
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by collecting all data and doing uniformly binning it in 20 bins, so that it is faster to compute the
conditional normalizing constants14 for each term in the pseudo-likelihood objective function.

To sample from the learned IFM, so that we can numerically compute quantities such as µσ , we use
Gibbs sampling.

a. X1 X2 X3

X4

X5X6

X7

X8X9

X10σ1 σ2 σ3

σ4

σ5σ6

σ7

σ8

σ9

σ10

b.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

Figure 11: The DREAM structural assumptions, following a process analogous to the Sachs et al.
case described in Figure 10.

G.3 Generating Ground-Truth Population Models and Data

Generating ground truth data, either for numerically computing population quantities by Monte Carlo
or as a generator of training data, includes the following steps: (1) learning simulators, (2) generating
ground truth X and (3) generating ground truth Y .

Learning simulators. The first step involves learning the simulators: with the Sachs et al. data, we
use 5 data regimes as the training data for the simulator (1 baseline regime and 4 interventional); and
with DREAM data, we use 11 data regimes as the training data for the simulator (1 baseline regime
and 10 interventional). As described above, two simulators are built for each of the two studies.

Generating ground-truth system X . Since each intervention is considered as a binary value (0
for no intervention and 1 for with intervention), with the training dataset of 5 data regimes in Sachs,
this gives us a total of 24 = 16 combinatorial possibility regimes; as for the DREAM case, we have
in total of 11 regimes, which means that the complete space Σ has 210 = 1024 combinations. To
simplify the computation of the benchmark, we are interested in the "one-to-double knockdown"
scenario and hence generate a total of 56 regimes (= 10×9

2 + 11).

The original training datasets for both simulators are discarded and we now consider the simulator
as the oracle for any required training set and population functionals. In particular, for each regime,

14While it is theoretically possible to use continuous variables and automatic differentiation through a
quadrature method that computes each univariate integral for each term in the pseudo-likelihood, this is still far
too slow in practice. The discretization level chosen for these examples are fine enough so that it does not appear
to affect the predictive performance of the p(y | x).
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we generate 25,000 samples to obtain a Monte Carlo representation of the ground-truth respective
population function p(x;σ).

Generating ground-truth outcome processes Y . For outcome variables Y from which we want to
obtain µσ⋆ := E[Y ;σ⋆] for given test regimes σ⋆, we consider models of the type Y = tanh(λ⊤X)+
ϵy, with random independent normal weights λ and ϵy ∼ N (0, vy). λ and vy are scaled such that
the ground truth variance of λTX is a number vx sampled uniformly at random from the interval
[0.6, 0.8], and set vy := 1− vx.

For each of the four benchmarks (i.e., based on either the Sachs et al. data or DREAM data, with
either a DAG model-based ground-truth or an IFM-based ground truth), we generate 100 random
vectors λ. The point of these 100 problems is just to illustrate the ability to learn (noisy) summaries
of X , or general downward triggers or markers predictable from X under different conditions. When
generating Y from X , we keep a single sample for X . We then generate an unique sample for each
of the 100 Y variations given the same X data.

Generating training data. For training our models, we additionally generate 5000 samples for the
observational regime (baseline) and 500 samples for each of the remaining 4 experimental conditions
(Sachs) and 10 experimental conditions (DREAM). To map from X to Y , we use the model described
above.

H Further Experimental Results

In Table 2 (see also Fig. 12) we present a series of further experimental results in numerical form
based on the following metrics: i) proportional root mean squared error (pRMSE): the average of
the squared difference between the ground truth Y and estimated Ŷ , where each entry is further
divided by the ground truth variance of the corresponding Y ; and ii) rank correlation (rCOR): the
Spearman’s ρ between the ground truth vector µσ⋆ for all entries in Σtest, and the corresponding
estimated vector.15

In Table 3, we present results from a series of one-sided binomial tests to determine whether models
significantly outperform the black box baseline.

Table 2: Results of our interventional generalization experiments for the Sachs and DREAM datasets.
The values correspond to the average of 100 Y problems.

Sachs DREAM
Causal-DAG Causal-IFM Causal-DAG Causal-IFM

pRMSE pRMSE pRMSE pRMSE
Blackbox 0.043 0.414 0.025 0.174

Causal-DAG 0.014 0.408 0.017 1.337
IFM-1 0.105 0.168 0.022 0.185
IFM-2 0.051 0.111 0.107 0.769
IFM-3 0.123 0.175 – –

rCOR rCOR rCOR rCOR
Blackbox 0.696 0.701 0.953 0.930

Causal-DAG 0.873 0.405 0.972 0.502
IFM-1 0.546 0.835 0.952 0.942
IFM-2 0.673 0.821 0.865 0.737
IFM-3 0.503 0.811 – –

15The IFM-3 results are omitted from Tables 2 and 3, as the method does not convergence in a reasonable
time.
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Table 3: P-values from a series of one-sided binomial tests against the null hypothesis that models
perform no better on average than the black box model. Significance at α = 0.05 is indicated with
one asterisk, and α = 0.001 with two.

Data Simulation DAG IFM1 IFM2 IFM3

DREAM Causal-DAG < 0.001∗∗ 0.044∗ 1 NA
DREAM Causal-IFM 1 0.972 1 NA
Sachs Causal-DAG < 0.001∗∗ 1 0.998 1
Sachs Causal-IFM 0.956 < 0.001∗∗ < 0.001∗∗ < 0.001∗∗

Dataset: DREAM
Simulation: DAG

Dataset: DREAM
Simulation: IFM

Dataset: Sachs
Simulation: DAG

Dataset: Sachs
Simulation: IFM
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Figure 12: Overlapping density plots showing average rank correlation between true treatment effects
and those predicted by the black box model and IFM1, respectively. Ideal performance is a point
mass on 1.
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