
AI Residency Mini Project — Gecia Bravo-Hermsdorff (gecia@)

Permutation-equivariant neural networks
for power spectrum estimation

TL;DR: A story about neural networks that don’t care about the order of things.

A floral motivation
Due to a completely believable sequence of events,
your life depends on procuring a beautiful bouquet of flowers.
Naturally, you download the well-known MNIST database of bouquet beauty.
And as luck would have it, there is even a neural network trained on the data!
You pick out a dozen flowers and inquire:

Query: “What is the beauty of this bouquet?”
Result: “InvalidArgumentError: In[0] mismatch In[1] shape: 12 vs. 3”

Fine. The network is only trained on bouquets of three flowers. You ask:
Query: “What is the beauty of: a peony, a daffodil, and a begonia?”
Result: “7”

Conveniently suspicious of the result, you follow up with:
Query: “What is the beauty of: a begonia, a daffodil, and a peony?”
Result: “5”

Weird. You certainly expected that the model wouldn’t be perfect, but you’d at least hope
that it would give the same answer for the same bouquet! The order shouldn’t matter.
As you just so happen to be a highly enthusiastic AI resident, you pull up Colab and start
developing a permutation-equivariant neural network. After all... your life depends on it!

An introduction by analogy
The remarkable success of convolutional neural networks for image classification is arguably
due to their extensive parameter sharing via convolution filters. This is justified by the nat-
ural assumption of translation invariance — essentially the requirement that each “patch”
of pixels is treated “the same”. For example, consider building a linear layer that extracts
four features (at each pixel) from the images in the (also well-known) MNIST database of
handwritten digits. Without any such assumption, one requires ∼2.5 · 106 parameters for
this layer.1 In contrast, a CNN layer with 3×3 filters has only 40.2

1(282 input pixels)×(282 output pixels×4 features) + (282×4 biases) = (2461760 total parameters).
2(4 filters)×(32 pixels per filter) + (4 biases) = (40 total parameters).

https://gecia.github.io
https://moma.corp.google.com/person/gecia


AI Residency Mini Project — Gecia Bravo-Hermsdorff (gecia@)

Analogously, we would like the network to treat each “shuffling” of our input “the same”.
For example, with our input of 512 (unsorted) things (each a vector of length 2), one would
naı̈vely require ∼2 · 106 parameters.3 By enforcing the desired permutation invariance, we
require instead only 20.4

At first glance, sets may appear too disordered for practical use. However, their tangible ap-
plications are more ubiquitous than one might suspect. Several examples (in no particular
order) are:

• analyzing a collection of samples from a distribution,
• choosing a plate of food from a buffet,
• selecting a group to complete a project,
• packing belongings for a trip,
• etc [2, 6, 1]

An analogous development
A permutation-equivariant layer
First, a baby problem. Consider all linear maps from the space of N scalar inputs to N

scalar outputs. Bundling these into two vectors of length N , xin
n and xout

n , any such linear
map is described by an N×N matrix wnn′ (thus requiring N2 parameters):

xout
n = wnn′xin

n′ (1)

where we are using Einstein summation convention.5

Next, a toddler problem. What if, when we shuffle the order of the scalar inputs, we require
the scalar outputs to move in the same way? That is, we only want linear maps that
are equivariant to permutations. An unavoidable consequence of this requirement is that,
instead of N2 parameters, we have just 2; each scalar output may only depend on:

i. its corresponding scalar input, and
ii. the mean6 of all scalar inputs.

Thus, the only viable academic offspring are of the form:

xout
n = wselfxin

n︸ ︷︷ ︸
i

+wmean
(

1
N
1n′xin

n′

)
1n︸ ︷︷ ︸

ii

(2)

where wself and wmean are scalar weights, and 1∗ is the all-ones vector of length N .
3(512×2 input scalars)×(512×4 output scalars) + (512×4 biases) = (2099200 total parameters).
4(2 input dimensions)×(4 output dimensions)×(2 equivariant operations) + (4 biases) = (20 total parameters).
5Essentially, when objects are multiplied together, there is an implicit sum over repeated subscripts. For example, the expression

y = M · x is short for yi =
∑

j mijxj . Instead, we use the more compact and generalizable yi = mijxj .
6Taking the sum is also possible.

https://gecia.github.io
https://moma.corp.google.com/person/gecia
https://en.wikipedia.org/wiki/Einstein_notation


AI Residency Mini Project — Gecia Bravo-Hermsdorff (gecia@)

For neural networks of this sort, puberty involves the promotion of each scalar input to a
vector of length K ′, each scalar output to a vector of length K, and the two scalar weights to
matrices of dimensionK×K ′. Upon graduation, we also allow forK scalar biases and apply
a pointwise nonlinearity ξ. You beam with pride at their final yearbook photo, which just
so happens to bear a remarkable resemblance to a general permutation-equivariant layer:

xout
nk = ξ

(
wself

kk′ x
in
nk′ + wmean

kk′

(
1
N
1n′xin

n′k′

)
1n + bk1n

)
. (3)

A permutation-invariant neural network
As we watch our neural network grow by sequentially stacking such permutation-equivariant
layers, it eventually comes to a decision that all such creatures must make: to remain
equivariant, or to become invariant.

If their life objective function was to classify the individual elements that make up the set
(eg, how important is each flower to the beauty of a given bouquet), then the neural network
should remain equivariant. The final output of the network should indeed have dimensions
N×Kfin, providing a vector of lengthKfin for each of theN elements (in the appropriate order,
of course).

However, more holistic neural networks that are concerned with properties of the entire set
(eg, predicting the beauty of a flower bouquet), should become invariant by aggregating over
the N outputs (eg, by taking the mean). The final output is instead a vector of length Kfin,
providing a result for the entire set (which does not change upon shuffling the order of the
N inputs).

A powerful task
Just as your neural network is reaching adulthood, Captain Plot Device™ swoops in and
offers you the most beautiful bouquet in all the world in exchange for your help on a different
problem with the same structure.7

Specifically, you are to predict the (truncated) power spectrum of a random periodic function
f(x), given N random samples (xn, yn = f(xn)). The functions are of the form:

f(x) =

kmax∑
k=1

√
pk cos(kx+ φk), x ∈ [0, 2π]. (4)

For each frequency k, the phase φk is sampled uniformly on the interval [0, 2π] and the power
pk is sampled from an exponential distribution with mean 1/k2. As kmax →∞, f(x) converges
to periodic Brownian motion (see Fig. 1).

7See CL 348675714 for the code associated with this mini project. The code is rather flexible, allowing for easy change of input
functions, predicted part of the spectrum, and network architecture.

https://gecia.github.io
https://moma.corp.google.com/person/gecia
https://critique-ng.corp.google.com/cl/348675714


AI Residency Mini Project — Gecia Bravo-Hermsdorff (gecia@)

Fig. 1: An instantiation of periodic Brownian motion. Also known as a Brownian bridge, this
process is essentially the continuous limit of a random walk that returns to its starting position
after a given interval (here [0, 2π]). We trained permutation-equivariant8 networks to predict the
(truncated) power spectrum of functions sampled via this process. For each such function f(x), we
sampled N points (xn)n∈[N ] iid and uniformly in [0, 2π]. We provided the set of (xn, yn = f(xn)) pairs
as input to the networks. Shown here are functions with kmax = 4, 32, and 256.

Some obligatory experimental details
We consider neural networks with D hidden permutation-equivariant layers (the “Depth”),
each with Khide scalars for each thing in the set (the “Kwidth”). Thus, the weight matrices
wself

kk′ and wmean
kk′ in equation (3) are of dimensions Khide×Khide.9 All layers use the ReLU

nonlinearity: ξ(·) = max(·, 0).

For the final layer, we first average all N things in the set (resulting in a vector of length
Khide). This passes through a dense layer to yield the Kfin scalars10 that estimate the log
power spectrum up to frequency Kfin.11

Using the TensorFlow implementation of the Adam algorithm [3] (with default parameters),
we aim to minimize the mean squared error in log pk for k ∈ [Kfin]. Sets contain 512 pairs,
and batches contain 256 sets.

8Well... technically permutation-invariant neural networks, since changing the order of the input must not change the final output.
However, as all but our last layer is permutation-equivariant (and honestly, “equivariant” has a nicer ring to it), we follow others [2, 4]
and allow for this mild abuse of nomenclature.

9With the exception of the first layer, whose weight matrices wself
kk′ and wmean

kk′ both have dimensions 2×Khide, as the things in the input
sets are (x, y) pairs.

10Asymptotically, the number of trainable parameters is Θ
((

2Kdébut + Kfin + 1
)
Khide + 2

(
D − 1

)
K2

hide

)
.

11In the actual code, the neural network exponentiated before outputting so as to give the estimate of the actual power spectrum.

https://gecia.github.io
https://moma.corp.google.com/person/gecia
https://en.wikipedia.org/wiki/Brownian_bridge
https://source.corp.google.com/piper///depot/google3/experimental/users/gecia/DeepSetsForPowerSpectrumEstimation/


AI Residency Mini Project — Gecia Bravo-Hermsdorff (gecia@)

A quadruplet of triptych results

Fig. 2: Permutation-equivariant neural networks need both depth and width. Using
equation (4) with kmax = 4, we generate sets of size N = 512, and train neural networks to predict
the power in the first 4 frequencies (Kfin = 4). We take 5 trained networks and measure the MSE in
log power predictions on 1024 test sets.

Fig. 3: Our choice of loss function reflects the learning in all frequencies. Using the
same networks as in Fig. 2, we plot the MSE for the log power at each frequencies k = 1, 2, and 4.
Unsurprisingly, we find that it is harder to learn the (smaller) powers at higher frequencies.

https://gecia.github.io
https://moma.corp.google.com/person/gecia


AI Residency Mini Project — Gecia Bravo-Hermsdorff (gecia@)

Fig. 4: Permutation-equivariant neural networks naturally handle sets of different sizes.
Just as permutation-invariance is oblivious to the ordering of the input set, nor does it care about
its size.12 Using the same networks as in Fig. 2. we test their predictions for sets of different sizes.
All test sets were generated from new realizations of random functions.

Fig. 5: Our permutation-equivariant neural networks are robust to noise. For this figure, we
push our neural networks a bit harder, training them to predict a larger part of the power spectrum
(Kfin = 8). Moreover, we train them on noisier functions (kmax = 64). Most of them did not make it.
Here, we test the predictions of one of the most adept architectures (depth = 4, width = 2048). At
test time, we also consider sets generated by functions with: less noise (kmax = 8, left), and more
noise (kmax = 512, right). In all cases, the network performed as desired.13

12This is true when the mean is used in the aggregation operations.
13This is not surprising, as the noise at kmax = 64 is ∼90% of its asymptotic (k →∞) value. Nonetheless, we are still proud of this

network; distinguishing between frequencies k = 7 and 8 is indeed notably more challenging than between k = 3 and 4.

https://gecia.github.io
https://moma.corp.google.com/person/gecia


AI Residency Mini Project — Gecia Bravo-Hermsdorff (gecia@)

A misplaced appendix
Incorporating multiple symmetries
In this mini project, we focused attention on incorporating the permutation symmetry14

into the structure of a neural network. As it just so happens, our particular choice of toy
problem has another symmetry: the power spectrum should be invariant to translation of
the x coordinate (modulo 2π).15 In fact, the xi don’t really live in [0, 2π], but rather on the
unit circle S1 — we should have called them θi.

This viewpoint is similar to that in [5]. They consider an unordered set of positions in R3 and
their features, requiring that the output be invariant to global rotations and translations of
the coordinates, in addition to permutations of the points themselves.

An inspiring coda
“Deep Mixtures”
What would the “thermodynamic” limit (N →∞) of permutation-equivariance look like?
Suppose you were interested in the beauty of an infinite garden.

Query: “What is the beauty of this infinite bouquet?”
Result: “ResourceExhaustedError: maximum recursion depth exceeded.”

Maybe you shouldn’t always hit “remind me later” when it asks to upgrade to OS-ℵ0.
You try your best with your archaic restriction to the finite:

Query: ‘‘What is the beauty of about 2000000 begonias,
3000000 daffodils, and 1000000 peonies?”

Result: �

Concerned that your query may take too long,
you open another terminal and ask the question this section is trying to get to:

Query: “What is the beauty of 1
3

begonias, 1
2

daffodils, and 1
6

peonies?”
Result: “This feature is still under development.

Please contact gecia@ for further information.”

14Ie, the action of the symmetric group SN .
15Ie, the action of the rotation group SO(2).

https://gecia.github.io
https://moma.corp.google.com/person/gecia
https://moma.corp.google.com/person/gecia


AI Residency Mini Project — Gecia Bravo-Hermsdorff (gecia@)

Acknowledgements
Many thanks to my onboarding mentor, Kieran Murphy (murphyka@), for restoring my faith
in advisors many times over. And, to my husband, Lee M. Gunderson, whose sharp wit and
creative spirit is remarkably intoxicating.

References
[1] J. Gordon, D. Lopez-Paz, M. Baroni, and D. Bouchacourt. Permutation equivariant models for compositional generalization in language. In ICRL, 2019.
[2] N. Guttenberg, N. Virgo, O. Witkowski, H. Aoki, and R. Kanai. Permutation-equivariant neural networks applied to dynamics prediction. preprint arXiv:1612.04530, 2016.
[3] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. preprint arXiv:1412.6980, 2014.
[4] E. H. Thiede, T. S. Hy, and R. Kondor. The general theory of permutation equivarant neural networks and higher order graph variational encoders. preprint arXiv:2004.03990,

2020.
[5] N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, and P. Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.

preprint arXiv:1802.08219, 2018.
[6] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep sets. In NeurIPS, pages 3391–3401, 2017.

https://gecia.github.io
https://moma.corp.google.com/person/gecia
https://moma.corp.google.com/person/murphyka
https://leemgunderson.github.io/
https://openreview.net/pdf?id=SylVNerFvr
https://arxiv.org/abs/1612.04530
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2004.03990
https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/1703.06114

