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Distinguishing between social and navigation Sparsity, heterogeneity, and clustering

To quantify human priors
T L; D R: over the structure of connections,
we overcame three main hurdles
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When the model uses subgraphs with more than 3-4 edges... Priors over smaller graphs
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Summarizing the distributions.

To characterize and compare distributions over graphs, _ ,
oraph cumulants are very intuitive. ..generalization within a domain is notably better than across different domains. Mathematically analogous to the classical cumulants
(mean, variance, skew, kurtosis, etc)...
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E ; Maximum-entropy distributions for modelling priors

(Howe & Purves, 2004)

Given a set of subgraphs with prescribed subgraph densities ﬁg,

..might there be similar “illusions” that exploit our priors over connections? the maximum-entropy distribution is of the form:
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We found it was helpful to have:
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carefully worded instructions, L(B) = E log
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..and are naturally represented as graphs. ..and apply Newton’s method until convergence.
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