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Abstract

Some new tasks are trivial to learn, while others are essentially impossible; what determines
how easy it is to learn the structure of a given task? Similar to how our priors about visual
scenes demonstrably color our perception of the world, our priors about the structure of
tasks shape our learning, decision-making, and generalization abilities. Drawing inspiration
from the insights afforded to neuroscience by the characterization of visual priors, in this
dissertation, we strive to quantify priors over abstract structures. In particular, we focus on
graphs: the structure of interactions.

In Chapter we describe the natural analogue of cumulants (e.g., mean, (co)variance,
skew, kurtosis) for graphs, building a hierarchical description based on local correlations
between an increasing number of connections. This provides a principled framework for
quantifying the propensity of a network to display arbitrary substructures, and allows one to
meaningfully compare networks of different sizes and edge densities.

In Chapter 4, we analyze graph structure globally, via the dynamics of diffusion,
providing an algorithm that reduces a graph while preserving its large-scale structure.
Our framework analytically unifies two areas of research, namely graph sparsification
(removing edges) and graph coarsening (merging nodes), and is competitive with current
state-of-the-art algorithms.

From a neuroscience perspective, we develop a novel method for quantifying human
priors over graphs (Chapters [2] and [3). In Chapter [5| we apply this method to graphical
representations of social and navigation tasks: two domains that have been relevant (over
evolutionary timescales) to our everyday life. We find that the resulting priors exhibit
non-trivial graphical structure. While some features appear to be general, such as the
preferred amount of sparsity as a function of graph size, other features appear to be

domain-specific, such as the preference for triadic closure in social interactions.
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Through the development of principled methods for analyzing network structure and
the use of an analytically tractable model of human learning on graphs, this work provides
useful tools that could cross-pollinate with other active areas of research, such as artificial

intelligence.
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Chapter 0

Thesis Roadmap

The White Rabbit put on his spectacles.
“Where shall I begin, please your Majesty?” he asked.
“Begin at the beginning,” the King said gravely,
“and go on till you come to the end: then stop.”
—— Lewis Carroll,

Alice’s Adventures in Wonderland

While not particularly linear, the work presented in this thesis can be brought into focus
through the (curved) lens of striving to quantify our priors over abstract structures. In
particular, we focus on graphs: the structure of interactions. The organization is as follows.

We begin at the beginning, with Chapter|[I|discussing the questions about human learning,
decision-making, and generalization abilities that initially motivated this thesis. In particular,
we highlight how our representation of a new task (ieﬂ our prior over the structure of tasks)

sharply constraints how fast and efficiently (if at all) we can solve it.

!'The author agrees with the sentiment of the footnote on page xv of [53]], viz, omitting superfluous full
stops to obtain a more efficient compression of, eg: videlicet, exempli gratia, etc.



In Chapter [2, we describe the theory of Markov Chain Monte Carlo with People
(MCMCP), a model of a recursive process whereby an agent learns from data generated
by the previous agent. This framework has been used to construct experiments to estimate
human priors across a variety of domains. Here, we consider it in a novel context: obtaining
priors over graphs. We show that priors can be more efficiently recovered by leveraging
the assumptions of the MCMCP framework and directly fitting a Bayesian model to the
aggregated data. This is in contrast with the standard MCMCP approach of considering the
data to be samples from the prior, once the chain has (hopefully) converged.

In Chapter we describe the natural analogue of cumulants (eg, mean, (co)variance,
skew, kurtosis) for graphs, building a hierarchical description of a network based on local
correlations between an increasing number of connections. The prescription is general,
seamlessly incorporating additional information often present in real networks, such as
directed edges, node attributes, and edge weights. Our framework provides a principled
method for quantifying the propensity of a network to display arbitrary substructures,
and allows one to meaningfully compare networks of different sizes and edge densities.
Moreover, it gives rise to a natural hierarchical family of maximum entropy models for
networks. This family enjoys all the theoretical advantages associated with exponential
random graph models (ERGMs), without suffering from their common practical pitfall
known as the “degeneracy problem” (wherein typical samples from the model are remarkably
different from the network they intend to model).

In Chapter ] we analyze graph structure from an alternative perspective, via the global
dynamics of diffusion throughout the graph, providing an algorithm that reduces a graph
while preserving its large-scale structure. Using the graph Laplacian pseudoinverse L', our
framework analytically unifies two active areas of research, namely graph sparsification

(removing edges) and graph coarsening (merging nodes). We compare our algorithm with



several existing methods using real networks, and demonstrate that it more accurately
preserves the large-scale structure.

In Chapter [5] we use the methods from Chapter 2] and the theory from Chapter [3] to
quantify human priors over graphical representations of social and navigation tasks. As tasks
in these domains have been relevant to our everyday life over evolutionary timescales, our
brains have likely adapted to solve them. We find that the recovered priors have non-trivial
graphical structure, requiring null models that constrain higher-order correlations. Some
features appear to be general (such as the preferred amount of sparsity as a function of graph
size), while other features appear to be domain-dependent (such as the preference for triadic
closure in social interactions). Finally, after discussing future directions, we come to the

end, then stop.



Chapter 1

Motivation

Solving a problem simply means representing it so as to make the solution transparent.

—— Herbert A. Simon,

The Sciences of the Artificial

1.1 Prelude

Our lives are punctuated by a multitude of seemingly disparate new tasks (eg, navigating a
new place, interacting with new people, starting a new paragraph) that we are able to perform
with relative ease. Still, if we consider all possible tasks we could be faced with, we would
not (at least initially) be good at most of them (eg, the Stroop task [217, 60], predicting
the financial market, writing a thesis). This simple observation leads to a fundamental,
yet largely unanswered, question in cognitive neuroscience: are there essential structural
properties that unite the tasks that our brains are “naturally” good at solving, and if so, what

are they?



1.2 A Bayesian brain

As scarcity and chance are essential facts of life, effectively handling uncertainty is key to
any organism’s survival. The correct expression for the probability of a hypothesis given

some new data is known as the Bayes’ rule [22]:

p(data = d|hypothesis = h)p(hypothesis = h)
>~ p(data = d|hypothesis = h)p(hypothesis = h)’

he&hypotheses

p(hypothesis = hdata = d) =

(1.1)

Abstractly, we think of an organism as having a ﬁxecﬂ hypothesis space H, containing
every hypothesis h the organism could ever consider. Likewise, the world provides a
fixed data space D, containing every datum d that the organism could ever encounter. The
organism’s “belief’ﬂ about how likely a given hypothesis £ is prior to observing any data is
known as the prior, denoted as p(hypothesis = h). After the organism observes new data
d, they compute how likely each hypothesis £ is to have “generated” these data, known as
the posterior, p(hypothesis = h|data = d). They compute this posterior using Bayes’ rule
(equation (I.1))), which requires their previous knowledge (ie, their prior) and their “model”
of the data (known as the likelihood, p(data = d|hypothesis = h)). Naturally, the organism
leverages their accumulated knowledge by using their updated belief about the hypothesis
space (ie, their posterior) as their prior for a new situation; indeed, “today’s posterior is

tomorrow’s prior” [156].

'We remark that there exist principled ways of incorporating a hypothesis space that grows as the organism
learns, viz, nonparametric Bayesian statistics. However, such a discussion would lead us astray.

%If we completely abstract the meaning of the random variables h and d, Bayes rule (equation (T.1)) is
simply proper counting. However, endowing / and d with meaning leads to many discussions of semantics.
Indeed, when we say “prior”, other humans have their own priors about what we mean by priors. Thus, we felt
it necessary to briefly clarify our priors about “prior”. We say the organism “believes”, “infers”, etc; these are
just convenient terms, not a statement of volition on the part of the organism. Moreover, while we assume
Bayesian agents in our analysis, we make no commitment about the neural implementation of generating the
priors, representing them, or computing the posterior.



An extensive body of research suggests that many organisms approximate equation (|1.1))
for a wide variety of inference problems, ranging from basic sensory processes to
higher-order cognitive functions (eg, [138. [75, 220, 169, 43l 33, 89, 178, (192, [73]).

Importantly, the results of such computations rest crucially on the choice of a prior.

1.3 Our brains rely on efficient priors

The importance of priors cannot be understated. Indeed, many aspects of our perception and

cognition can be understood through their quantification.

1.3.1 The success of the efficient coding hypothesis

A particularly successful story of how priors can help inform neuroscience begins with
the investigation of the “efficient coding hypothesis™. It states that sensory systems have
evolved to maximize information transmitted to the brain [15]], implying that priors over
sensory inputs (here, the neural representations of new stimuli) have adapted to effectively
encode the relevant statistics of the environment. This framework has contributed to major
advances in our understanding of the neural code [192]. For example, the mammalian
cochlea and auditory nerve fibers have properties that allow for efficient representation of the
acoustic structure of speech and a wide range of other natural sounds [154, [166]. Moreover,
higher-order computations such as visual attention [178]] and working memory [164, [35]
display analogous properties.

The visual system enjoys the most thorough investigation of the efficient coding
hypothesis and is (not coincidentally) arguably the most well-understood sensory system
(see Figure[I.T). For example, many properties of mammalian visual cells, such as sensitivity

to orientation and spatial frequency, maximize the transmission of information, conditioned

6



on the statistics of natural images [81, 205,206, |192]. Moreover, visual priors literally color
our perception. Our color percepts can be described in terms of hue (the sensation of the
relative redness, greenness, or bluenesﬂ), saturation (the perceived difference from neutral
gray), and brightness (the apparent intensity). While computers frequently characterize
colors using these attributes as a set of basis functions, the representation used by our
retina is not beholden to such convenient interpretations. Instead, the visual system exploits
statistical covariations present in natural scenes, directly influencing our perception of color
[157]. This principle of efficient coding also explains several well-known visual illusions
(110, 111] (Figure[I.1p), evidentiating a general and important computational tradeoff in
biology: priors cannot be both exhaustive and efficient. That is, by efficiently distinguishing
relevant visual information, our visual priors render us blind to insignificant differences.

Might there be similar “illusions” with respect to our priors over the structure of tasks?

3If you are fortunate enough to be tetrachromatic, feel free to add a fourth color of your choice.



N
/\

Figure 1.1: Our visual priors color our perception. In visual neuroscience, quantifying
the statistics of natural images and interpreting them through the lens of the “efficient
coding hypothesis” [15] has led to major advances in our understanding of the visual system,
providing explanations for a wide range of phenomena. As such, visual priors are a key
component of our understanding of the visual system. For example, in Figure a), it is rather
trivial for a human with proper vision to distinguish between the top right and top left
images. However, this task is much more difficult for the bottom two images, even though
their difference at the pixel level is rather similar to the difference between the top two
images. This illustrates how our visual priors help us to distinguish scenes that are relevant
to us, at the expense of rendering us blind to unnatural differences. Indeed, many visual
illusions can be understood as exploiting these priors. For example, Figure b), displays
the Miiller-Lyer illusion, in which the top line looks convincingly longer than the bottom
one, even though their length is the same. A study by Howe & Purves [110] provided a
quantitative explanation of this effect. They analyzed a large collection of 3D natural images,
measuring the length of straight lines, conditioned on the structures at their endpoints. They
found that lines with outward pointing structures (such as the top line) were on average
longer in 3D space than those terminated by inward pointing structures.

1.3.2 Our priors over the structure of tasks

shape our ability to learn them

The efficient coding hypothesis naturally extends to the domains of learning, decision-making

and planning [34} 200, 46]. Here, we focus on the importance of priors over the structure



of tasks, ie, the brain’s representation of new tasks. The processes involved in building
such priors are more subtle [36]: an organism can (and should) act so as to “sample” tasks
that maximize some sort of expected reward; the learning process that updates these priors
is not well-understood; and the computations performed by the organism rest recursively
on their priors over the structure of tasks. However, the basic principle still holds: these
priors should efficiently encode useful invariants shared among tasks that are relevant to the
organism (a process known in the literature as “learning to learn™).

A property of high-dimensional spaces that is particularly irritating for effective learning
(known as “curse of dimensionality” [25]) is that the inclusion of a few more dimensions in
the representation of a task requires one to collect exponentially more data to learn said task
(as volume grows exponentially in the number of dimensions). This suggests that priors
over the structure of tasks should be compact, filtering out redundancies.

However, there is no free lunch [[122]; reduced representations also constrain the set of
tasks that one can efficiently solve. Therefore, these priors cannot be both exhaustive and
efficient. For example, suppose that our brains were to represent every possible dimension
of a task (eg, when learning when to cross a street, one would have to consider the number
of trees, the weather, the color of the cars, etc). Given our finite lifetime, the amount of data
we might hope to sample is truly a small parameter compared to the exponential number of
combinations we would need to learn about; thus, we would never be able to generalize.

Indeed, as the prior used in a given task sharply constrains how quickly and efficiently
(if at all) this task can be solved, such a prior should leverage on the useful structure of tasks

that are relevant to the organism [34, (19, 200].



1.4 Towards quantifying our priors

over the structure of tasks

1.4.1 Formulating a tractable problem:

from general tasks to social and navigation ‘‘task graphs”

The covert nature of mental processes renders the quantification of any prior a challenging
task. Due to its abstract nature, quantifying priors over tasks is indeed a formidable goal,
if not only because the question “what is a task?” is arguably too open-ended. Thus, to
make progress towards this goal, instead of attempting to codify the abstract structure of an
arbitrary task, in this thesis, we focus on tasks in two specific domains: social and navigation
(see Figure[I.2). Our motivation is twofold.

First, from a neuroscience perspective, these tasks have been relevant to our everyday
life over evolutionary timescales. Thus, our brains have likely adapted to solve them. Indeed,
there is much of evidence supporting this hypothesis (see Chapter [5|for further discussion).
For example, the hippocampus appears to encode a spatial map of the environment [29, 163,
76, 1176]. Likewise, there appear to be brain regions specialized in the processing of social
information and theory of mind (ie, the modeling of others’ mental states) [190, [189, 73] 3]

Second, from a methodological perspective, these tasks have a natural representation as
graphs, which serves to make the space of tasks both discrete and finite (see Chapter[2]) and

allows us to use graph theoretical tools to quantify their structure (see Chapter [3)).
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Figure 1.2: Formulating a tractable problem: from arbitrary tasks to ‘“‘task graphs”.
Quantifying human priors over tasks is a formidable goal, if not only for the reason that
even the question “what is a task?” is arguably too open-ended. To make progress towards
this goal, we focus on two specific domains: social and navigation. The top and bottom
mappings refer to two abstractions that played a vital role in the development of network
science. Top: The graph representing Euler’s analysis of the seven bridges of Konisgberg
[78]], which laid the foundations of graph theory. Bottom: The Zachary’s karate club network
[236]], a small social network that has served as a popular benchmark for work in community
detection. The quotes around the arrows are meant to clarify that (as any reasonable person)
we are not arguing that the massively complicated space of social and navigation tasks can
be faithfully reduced to the small graphs in the experiments in this thesis. However, in
analogy with these examples, we do argue that starting with smaller, simpler examples is a
sensible approach to eventually understand our priors over more complex tasks.

1.4.2 Overview of our approach
In brief, our framework for quantifying these priors relies on four key ingredients:

1. First, we abstract the notion of tasks, representing them as graphs.

2. Second, we collected human data in social and navigation experiments, using a method

similar in spirit to Markov Chain Monte Carlo with People (MCMCP).
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3. Third, we fit the aggregated data to a Bayesian model that leverages the MCMCP

assumptions.

4. Lastly, to quantify these priors and make comparisons, we developed a novel natural

hierarchical parameterization of distributions over graphs.

12



Chapter 2

The Theory of MCMC with People

Bob does have grounds for complaint, however:
the protocol tells him that he is communicating with Alice (who is honest)

but it does not cover the structured proof language Isar.

—— Confused Markov Chain,

A Markov chain trained on the bible and programing books [|I13)]

2.1 Overview

In this chapter, we study some aspects of the theory of Markov Chain Monte Carlo with
People (MCMCP) [93]], a technique that has been used to estimate human priors for a variety
of domains [224, (149, 235, 148 135} [153) 234) 233]]. Here we study it in a novel context,
namely to obtain priors over graphs.

We show that the priors can be more accurately recovered by leveraging the assumptions
of the MCMCP framework and directly fitting this model to the data[l| This is in contrast

with the standard MCMCP approach of recording data once the chain has (hopefully)

I'This is somewhat ironic given the amount of effort that the author and Talmo Pereira (her collaborator in
the construction of the experimental platform) poured into developing an online experimental platform that
smoothly allocates participants to the appropriate chains in real-time.
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converged. In order for our approach to scale to higher number of nodes (and for the
results to be interpretable), we propose a novel hierarchical parameterization of probability
distributions over graphs. We will explain the motivation, construction, and theoretical
framework underlying this parameterization in great detail in Chapter (3| In this chapter,
we demonstrate some benefits of this parameterization that are relevant for the analysis of
participants’ data (Chapter [5)), namely that it allows for: more accurate reconstruction of
the prior (in silico data), better generalization (in sapiens data), and effective recovery of
meaningful summary statistics (in data).

We start our discussion with one of the first uses of iterated learning/MCMCP in

psychology, followed by a detailed explanation of the MCMCP model and its assumptions.

2.2 Iterated learning as Markov Chain Monte Carlo

with People (MCMCP)

Iterated learning refers to the process whereby an agent learns from data generated by
another agent, who themselves learned it the same way, and so on (see Figure [2.2)). It is
an important and highly researched psychological phenomenon [136, 108, 167, 219, 94].
Under some assumptions (which we shall soon discuss), iterated learning can be viewed as
a Markov Chain Monte Carlo algorithm (instantiated by the agents) that has as its stationary

distribution the agents’ shared prior over the relevant space.

2.2.1 From drawings to probabilities

Bartlett [[17] was one of the first people (in 1932) to use iterated learning to study a
psychological process (memory). The result of the experiment is displayed in Figure

While the results were evocative (hieroglyphic owls transmuted into sketches of cats through
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iterated learning!), the experiment was lacking in quantitative analysis. We now describe

how the framework proposed by Griffiths & Kalish [93] fills this gap.
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Figure 2.1: Avian hieroglyphs beget feline sketches, or so it appears. Shown here are the
results from one of the first psychological experiments using iterated learning, conducted
by Bartlett in 1932 [[17]]. He presented an abstract depiction of an owl (“initial drawing”)
to the first subject for one minute, then asked them to draw it from memory. The first
subject’s drawing was then shown to the next subject for the same amount of time, who then
proceeded to draw it back from memory, and so on (each drawing is labelled by its artist).
Exploiting the noisy transmission of information, the owl quickly evolved into a cat! The
scientific challenge is to produce meaningful quantitative statements from such a result. We
argue that to meet this challenge would require meaningful summary statistics of human
priors over the space of such drawings. Unfortunately, thus far, this remains a daunting
task. In this thesis, we make a first step in this direction by developing principled summary
statistics of priors over the space of small graphs, considered as abstractions of social and
navigation tasks.
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2.2.2 MCMCEP: a Bayesian model of iterated learning

As illustrated in Figure [2.2] the MCMCP model can be seen as a formalization of the

“telephone game” [[112].

Cmawoidy>  mali > < hohe
(o o o

hypothesis hypothesis hypothesis

data data «--

Figure 2.2: Schema of Markov Chain Monte Carlo with People MCMCP).

Top: The MCMCP model is effectively a formalization of the globally famous “telephone
game’” [112]]. One person starts the game (ie, the chain), with some initial condition (here, a
word). This person noisily transmits this information to the next person (here, by whispering
the word in their ear). That person does their best to understand this noisy data, and forms
a hypothesis about its content (here, what the previous person said to them). Then, they
whisper it into the next person’s ear, and the chain continues as a back-and-forth between
hypothesis and (noisy) data. Usually, the final word has nothing to do with the initial
conditions, instead converging on something relevant to that group of people (eg, if you
have ever played this game with young children, you find that the chain often converges to
emotionally charged words in their lexicon, such as the one suggestively illustrated in the
right-most speech bubble).

Bottom: This back-and-forth between hypothesis and data forms a Markov chain (MC) over
the space of hypotheses (when marginalizing over the data). Under some assumptions,
this MC converges to the participants’ shared prior over the hypothesis space. The most
relevant assumptions are that all participants: share the same prior (ie, they assign the same
probabilities to each hypothesis in the hypothesis space), use Bayes rule to sample from
their posterior to provide the data to next participant, and share the same likelihood function
p(d|h) (ie, the data are all produced in the same known way). Thus, the final “samples” (or
data points) from the experiment can be treated as samples from the participants’ shared
prior. Indeed, this approach has been employed to quantify human priors in a diversity of
contexts (eg, [224} 48,1235, (149]).
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Let D denote the space of all data that the participants might observe (eg, in Figure
D is the space of all sounds a participant could make while whispering a word, and d is
one such utterance). In this setup, the amount of data transmitted at each iteration is ﬁxecﬂ
(eg, in Figure a single whisper). Let H denote the space of all hypotheses that the
participants might have about what the datum actually was (eg, in Figure 2.2 H is the space
of all words (in the participants’ relevant lexicon) and h is one such word). For simplicity,
we consider both D and # to be discrete and finite (with size |D| and |H |, respectively).

We assume that the participants are identical Bayesian agents, sharing the same beliefs
and behavior. In particular, they are all assumed to have the same shared prior over
hypotheses p(h) and the same correct model for data generation, ie, likelihood function
p(d|h) (eg, in Figure given a specific hypothesis h € H, all participants have the same
probability of generating a given utterance d € D).

At iteration ¢, upon observing the datum d,_;, the Bayesian participant computes the

probability distribution over H given this d;_; (ie, the posterior, p(h|d;_1)):

by — Pl plahyp(n)

Y hen p(dR)p(h) p(d) (2.1)

We also assume that the participant chooses a hypothesis h; by sampling iid from their
posterior, and generate data d, for the next participant in the chain using p(d|h;).

This back-and-forth between the data observed by the participants and their resulting
hypotheses can be marginalized over the data to specify transition probabilities for a Markov
chain (MC) over the space of hypotheses 7. As we have assumed that the participants share
the same fixed decision rule, the transition probabilities do not change across iterations.

Hence, we have a time homogeneous MC, characterized by the following transition matrix

2If the amount of data transmitted increases over time, then self-sustained learning can occur (as opposed
to always converging to the participants’ shared prior), see Chazelle & Wang [54, 155] for a mathematical
analysis of this case.
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T, with entries:

Tij = plhis1 = ilhy = j) = Zp(ht—H = i|dpy1 = k)p(di1 = klhe = ), (2.2)

keD

where p(h;1 = ilh; = j) is the probability that the participant chooses the hypothesis i
after observing data generated from hypothesis ;.

The transition matrix 7" encodes all information about the MC over the hypothesis space
defined by the MCMCP model. Hence, we can study its dynamics and asymptotic behavior
by simply using linear algebra. If bo is a row probability vector (with || entries) encoding
our initial knowledge about the hypothesis space, then by = TI;O encodes this knowledge at
iteration 1. Likewise, for iteration ¢, b; = T'"by.

In order to understand the asymptotic behavior of the model, we want to know if there is
a probability distribution 7 that, given an arbitrary large number of iterations ¢, the chain
always equilibrates to it, no matter the initial condition bo, ie,

lim T =7 Vb (2.3)
Such a distribution 7 is called the stationary distribution of the MC with the transition matrix
T.

A necessary requirement for the probability vector 7 to be the stationary distribution
of this MC, is that it must be an eigenvector of T' with associated eigenvalue 1 (ie, the
eigenvector associated with the largest eigenvalue, since T is a stochastic matrix). Moreover,
T must have only a single eigenvalue with value 1, so as for 7 to be unique. This requirement
translates to one more assumption in the MCMCP model, namely, that the MC is ergodic.
That is, the chain is irreducible (ie, any state/hypothesis can be reached from any other

state/hypothesis with a non-zero probability in a finite number of iterations, a fair assumption
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given humans’ non-zero probability of doing something strange/unexpected) and aperiodic
(not an issue for our MCMCP over graphs, as there is a nonzero probability of forming the
hypothesis that generated the observed data).

Taking all the assumptions together we can now easily verify the main result of the
MCMCP framework, namely that the stationary distribution of T is equal to participants’
shared prior. Representing the shared prior as a vector with entry i equal to p(h = i) and

substituting in the definition of T' (equation[2.2)), we have

ht—i—l—l ZTUpht—j

JEH
= Z Zp(ht-H = i|di11 = k)p(diy1 = di|he = j)p(ht = j)
JEH keD
= plhipr =il = k)Y pldisr = klhy = j)p(he = j)
keD JEH
=Y p(hugr = ildir = k)p(disr = k)
keD
(diy1 = klhe = 1)p(he =i
= Zp = d| ; ]){; Pl )p(dt—H =k)
= t+1 = k)
= Zp(dt-H = klhe1 = 0)p(hy = i)
keD
= p(hy = ).

Thus, the prior p(h) satisfies the condition and is therefore the stationary distribution 7

that we seek.

2.3 MCMCP on graphs

We now explain our algorithm for generating MCMCP experiments on graphs (Figure [2.3)),

relating it with the explanation of the MCMCP model from the previous section.
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2.3.1 Our experimental algorithm

Figure [2.3]illustrates our algorithm for generating MCMCP experiments on graphs. (See
Chapter [5|for a detailed explanation of the cover stories. Also, see this link for a video with
a demonstration of our gamified online experimental platform, which allows participants to
interactively draw the graphs.)

For a given chain, the graphs are with a fixed number of nodes (we ran experiments with
4,5,6,7,8, 10, 12, and 15 nodes, see Chapter[5)), and we only consider simple graphs (e,
unweighted, undirected, networks with no self-loops or multiple edges). The data d are the
pairwise relations shown to the participants (ie, a set of pairs of nodes and the presence or
absence of an edge between each pair), which we refer to as “partial graphs”, and D is the
set of all possible partial graphs. The hypothesis space H corresponds to all simple graphs
with n nodes, and / is the graph returned by the participant.

The assumption that participants share the same correct likelihood function implies that
they know the algorithm used to produce the experiment. Here, this means that they believe
that the partial graphs are generated by randomly erasing a fraction of the relations from
some underlying graph. This is clearly articulated in our experiments.

The transition matrix 7" of our MC over the hypothesis space (ie, all unique/nonisomorphic

simple graphs with n nodes) has entries:

Ti; = p(9;l9) = ), plgildi)p(dilg:) (2.4)

where p(dy|g;) is the probability of seeing partial graph d; by randomly obscuring sr
relations of the graph g; (where s is the fraction of relations obscured, and r = (’2‘) is the

total number of pairwise relations), and p(g;|dy) is given by Bayes rule using a fixed prior.
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Figure 2.3: Schema of our algorithm for generating MCMCP experiment on graphs.
a) For a given chain, we restrict attention to a fixed number of nodes (here 5).
Our experimental algorithm consists of the following steps:
b) First, we initialize the chain by creating an underlying “task graph” for the first participant
(eg, the nodes representing students and edges representing friendships, see Chapter [5).
¢) Then, we obscure a fraction s of this graph’s pairwise relations at random (here s = 1%),
and show the remaining pairwise relations (the “partial graph™) to the participant.
d) Then, we ask this participant to infer the obscured relations based on this partial
information (eg, whether the pairs of students in gray ellipses are friends or not).
e) Then, based on the response of this participant, we update the task graph.
Then, we repeat this procedure: f) obscure relations; g) participant infers the obscured

relations; h) update the task graph.
We refer to this sequence — f) obscure, g) infer, h) update — as one iteration.

2.3.2 Rate of convergence to the prior

A natural question to ask is: how long does it take for a given chain to converge to the
prior? For small number of nodes, it is possible to enumerate all nonisomorphic graphs and
explicitly construct the transition matrix (equation [2.4)) for a given choice of prior over these
graphs. The question of how fast the chain converges to the prior can then be answered

exactly using linear algebra (see Section [2.5.1)).
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Figure |2.4|displays the asymptotic mixing time (defined as in Section for chains
over 6 nodes (156 nonisomorphic graphs) using different priors and fraction of relations
obscured. As expected, the mixing time is highly dependent on both the overall shape of
the prior, as well as the fraction of relations obscured. In fact, the mixing time can vary
many orders of magnitude depending on these parameters. This poses potential difficulties
in using MCMCP to recover priors: we do not know the shape of the true prior, collecting
data with humans is costly, and obscuring too many relations could result in an experiment
that is too underconstrained for participants to adequately engage and give their true prior.

In the special case of a simple prior not sensitive graphical structure and given by an
Erd6s—Rényi distribution ER,, ,, (ie, every potential edge is included independently with

probability p), we have the exact expression for the asymptotic mixing time, namely:

1

- 2.
Tnlew log (1 —3s)’ 2.5)

where s is the fraction of relations obscured at each iteration.
Thus, as illustrated in Figure for an ER,, , prior the asymptotic mixing time only
depends on the fraction of relations obscured (but not on the number of nodes) and is

relatively fast.
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Mixing time for 6 nodes chains for bimodal priors
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Figure 2.4: Convergence rate to the prior is highly influenced by the shape of the prior
and the amount of information shown at each iteration. We computed the asymptotic
mixing times 7,, of Markov chains over graphs (as defined in Figure 2.3) with 6 nodes
(156 nonisomorphic graphs) for a range of multimodal priors and of fractions of relations
obscured s. We parametrized the priors with probabilities given by the number of edges in
the graph (here, 0 to 15). In particular, we gave 50% of the probability to graphs separated
by z edges (the “peak Hamming distance”) and distributed the rest of the probability
uniformly to the other graphs. For example, for a peak Hamming distance of 5, we gave
25%, distributed equally, between all graphs with 5 edges, another 25% between all graphs
with 10 edges, and distributed the remaining 50% equally between all others. As expected,
the higher the fraction of relations obscured, the faster the mixing time (lower vertical axis).
Conversely, the larger the distance (in terms of number of edges) between the peaks of the
prior, the slower the mixing time. Varying these parameters leads the mixing time to vary
many orders of magnitude.

23



Mixing time for Erdos Renyi prior with p = 0.5 for different chains
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Figure 2.5: Chains converge quickly for simple priors. Displayed are the asymptotic
mixing times 7,, of Markov chains over graphs with 4 nodes (11 nonisomorphic graphs), 5
nodes (34 nonisomorphic graphs) and 6 nodes (156 nonisomorphic graphs), for a variety of
fraction of relations obscured s, and using Erd6s—Rényi distributions ER,, 1, as priors, where
ER,, 1, is not sensitive to any graphical structure (the probability of every edge is given by
an independent coin flip). In this case, chains converge relatively quickly to the prior, with
convergence times depending only on the fraction of relations obscured, independent of
the number of nodes. In fact, there is a closed form solution for 7,,, when the prior is ER,, ,,
(dotted black curve, equation (2.5)).

2.4 Resource constrained MCMCP

In standard MCMC, one uses samples (here the answers by the participants) generated by
the algorithm to reconstruct the target (stationary) distribution (their prior). This process
wastes much of the data for two reasons. First, one must discard the initial samples until the
chain has (hopefullyﬂ) converged to its stationary distribution, the so called “burn-in” period

[186]. Second, as the samples are correlated, one has fewer effective samples. While this

3 As determining convergence can be non-trivial in certain cases, especially when the state space is large.
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might not always be a problem (eg, when samples are generated using an efficient computer),

in MCMCP the primary bottleneck is due to the use of human participants.

2.4.1 Exploiting the Bayesian assumption

Fortunately, in our case, we can use the experimental data more efficiently by leveraging
the additional structure provided by the Bayesian assumption. Specifically, we propose to
recover participants’ prior by fitting the MCMCP model directly to their collective choices,
as opposed to using the observed graph frequency (once the chain has (hopefully) converged)
as a proxy of the prior as is done in standard MCMCP. In our model, the unknowns are the
probabilities that the prior gives to each of the nonisomorphic graphs on the relevant number
of nodes.

To compare these methods, we simulated our MCMCP experiment over graphs,
assuming identical ideal Bayesian agents, respecting all assumptions of the MCMCP model
(Figure 2.3)). As illustrated in Figure we find that the fitting method recovers the
prior more accurately than the standard MCMC sampling method (especially in the case
of constrained chain length)ﬂ In addition, our method does not require estimation of the
mixing time, which, as shown in Figure[2.4] can vary dramatically depending on the prior,

number of nodes, and fraction of relations obscured.

4We use KL divergence as a measure of distance to the prior (as opposed to, eg, total variation distance),
as it is more sensitive to relative differences in probabilities. However, the results are similar when using other
measures.
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Figure 2.6: The prior can be more accurately recovered by leveraging the assumptions
of MCMCP and fitting this Bayesian model to the aggregate data.

We simulated the response of identical ideal Bayesian agents (respecting all assumptions of
the MCMCP model) playing our experiment on graphs with 5 nodes and with half of the
relations being obscured at each iteration. The agents’ shared prior was chosen to give an
asymptotic mixing time of 7,,, ~ 13 iterations. For each simulation, we fit the resulting data
to the MCMCP model with a multinomial prior using maximum likelihood estimation. We
then computed the logarithm of the KL divergence from the agents’ true prior to: the fitted
prior (red); the observed frequency of graphs ( ); and (as a reference) the distribution
obtained by sampling iid from the true prior the same number of times (gray). Shading
denotes +1 standard deviation about the mean for 64 simulations for a given choice of
parameters.

a) For all simulations, we fixed the total number of data points (where each data point
corresponds to the response of a single agent) across all chains to 2048, but varied the length
of the chains that generated these data. Note that using the observed frequency of graphs
is doomed to fail when the chain length is shorter than the mixing time 7,,, as there is not
enough time for any chain to approach the prior. Moreover, fitting the data to recover the
prior does better than using the observed frequency even when the chain length is much
longer than the mixing time.

b) For all simulations, we fixed the chain length to 16, but varied the total number of chains.
As the number of data points increases, fitting the prior continues to improve, while using
the observed graph frequency asymptotes to some finite error. This asymptote is mainly due
to the contribution from graphs in the beginning of the chains. While theoretically one could
simply remove these initial samples, in practice one does not know precisely when the chain
has sufficiently converged. Thus, our approach has the additional advantage of not having to
estimate the mixing time, and appears to perform equally well regardless of chain length.

In Figure [2.7] we remove the issue of the burn-in period by initializing the simulated
chains with a graph sampled from the underlying prior of the simulated agents. Even with

the burn-in period removed, neighboring samples in a chain are correlated. This results
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in an effective decrease in the number of samples obtained from such an MCMCP chain
(asymptotically, one can approximate the effective sample size by dividing the total number
of data points by the mixing time, although more precise estimates exist [[115]). When
the chain is longer than the mixing time, our method of fitting the aggregated data to the
MCMCP model to recover the prior again outperforms the traditional MCMCP approach.
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Figure 2.7: Our fitting method outperforms the standard MCMCP sampling approach,
even when the “burn-in” period is eliminated. We generated synthetic data using the
same specification as in Figure 2.6 However, we start with artificially pre-converged chains,
by initializing the chains using a graph sampled from the true prior. Each simulation of the
model has chains of a given length, with the number of chains chosen to provide 600 total
data points. Clearly, when the chain length is 1, the perfect initialization renders the standard
approach equivalent to sampling iid from the true prior. However, as the chain length
increases, correlations between neighboring samples result in a decrease in the effective
sample size, and the error when using the standard MCMCP sampling approach increases.
When the chain length is 2 7,,,, our method of recovering the prior by directly fitting the
MCMCP model to the data outperforms the standard approach.

2.4.2 A combinatorial explosion

The elephant in the room is that the results so far are predicated on the assumption that one
can fit the entire prior using a multinomial distribution over the space of all nonisomorphic

graphs with n nodes. The motivation for using MCMCP in the first place is that exhaustively
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enumerating the hypothesis space is computationally intractable. Indeed, the dimension
of the space of priors over graphs grows super-exponentially in the number of nodes (see
Figure [2.8)). Moreover, the number of samples will typically be vastly smaller than this
dimension, leading to a highly underdetermined system.

This elephant also has a calf; even if we could completely and accurately determine

such priors over graphs, the parameterization offers little in terms of interpretable summary

statistics.
nodes: unique graphs: unique representations:
3 4 8
4 11 64
5 34 1024
6 156 32768
7 1044 2097152
8 12346 268435456
9 274668 68719476736
10 12005168 35184372088832
11 1018997864 36028797018963968
12 165091172592 73786976294838206464
13 50502031367952 302231454903657293676544
14 29054155657235488 2475880078570760549798248448
15 31426485969804308768 40564819207303340847894502572032

Figure 2.8: A combinatorial explosion. The middle column corresponds to the number
of unique (ie, nonisomorphic) simple graphs with n (left column) nodes, and the right
column corresponds to the number of distinct representations (ie, the number of distinct
n X n binary symmetric traceless matrices). The number of nonisomorphic graphs grows
super-exponentially in the number of nodes [[114], and it quickly becomes infeasible to fit the
priors with perfect resolution. In this thesis, we propose a novel and principled hierarchical
parameterization of such priors over graphs (see Chapter [3] for the parametrization and
Chapter E] for the application to human priors).

In the next chapter, we describe in detail a novel hierarchical parameterization of
distributions over graphs that solves both of these pachyderm-related issues. In short, our
parameterization allows for modeling of priors with increasing levels of structural complexity.
The prior complexity is indexed by the model “order”, with the first order corresponding

to ER,, ,, the highest order corresponding to a full multinomial (ie, the probability of each
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nonisomorphic graph can be independently specified), and the remaining orders interpolating

smoothly and meaningfully between these two extremes.

2.4.3 Practical advantages of our hierarchical parameterization

We conclude this chapter by demonstrating some practical advantages of this hierarchical
parameterization relevant to our analysis of participants’ data in Chapter [5] In particular,
we obtain: more accurate recovery of the prior in simulated data, where the ground truth
is known (Figure [2.9)); improved generalization of real data (Figure [2.10); and effective

recovery of meaningful summary statistics (Figure[2.11)).

KL divergence from true prior

16 32 64 128 256 512 1024

Number of data points

Figure 2.9: Our hierarchical parametrization of distribution over graphs allows for
more accurate recovery of the prior. We generated synthetic data using the same
specification as in Figure [2.6| with a chain length of 1. We fit the MCMCP model to
the simulated data using our hierarchical parameterization of the prior for several choices of
order (higher orders correspond to more structured/complex priors). Shading corresponds to
+1 standard error about the mean for 64 runs of this simulation. When the data are limited,
using a lower order parametrization recovers the prior more accurately. As the quantity of
data increases, the ordering incrementally inverts until the model with highest complexity
(ie, a full multinomial) does best. However, as the number of parameters in such a model is
super-exponential in the number of nodes (and engaged human attention is expensive and
difficult to obtain), the optimal order will typically be intermediate.

29



o

P
N

Average log-liklihood
of the (fixed) test data

\

10™ order (multinomial)

~ 4norder

3rd order

1storder (ER)

-2.0
50 100

200 500

Number of data points in training data

Figure 2.10: Generalization of real data are improved when using our hierarchical
parameterization. We used 1210 data points from participants doing our experiment on
5 nodes. We randomly partitioned the data into test (698 data points) and training data,
and fit the MCMCP model to the test data using our hierarchical parameterization of the
prior for several choices of order (higher orders correspond to more structured/complex
priors). Shading corresponds to £1 standard error about the mean for 64 repetitions of
this process. In accord with the bias-variance tradeoff, when the data are limited, using
a lower order parametrization to model the prior results in better generalization (higher
log-likelihood of the unseen data). However, as the number of data points increases, higher
order parameterizations do increasingly better. Again, in practice, the optimal order is

typically intermediate.
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Figure 2.11: Our hierarchical parameterization of the prior effectively recovers
meaningful summary statistics. We simulated identical ideal Bayesian agents with a
realistic prior playing our experiment for graphs with 6 nodes. The prior was obtained by
fitting a (fifth-order, see Chapter [3)) model to the data of actual participants. The horizontal
axis corresponds to the order of the fit and the vertical axis to relevant summary statistics (ie,
the scaled graph cumulants, see Chapter [3), where fits of lower order have fewer relevant
statistics. Fits of higher order have summary statistics that agree with those from lower
orders. This desirable property will prove to be useful when analyzing participants’ data

(Chapter [3).

2.5 Methods

2.5.1 Mixing time

The rate of convergence to the prior depends on the magnitude of the second-largest
eigenvalue A\, of the transition matrix 7', with the convergence becoming slower as
A2 increases towards 1. Decomposing the solution in terms of eigenvectors yields
p(t) =3, ¢;U; AL To determine the rate of convergence, we are interested in the longest

exponential decay, which is determined by \;. We define the asymptotic mixing time 7,

as how many iterations (when the number of iterations ¢ is large) it takes for the distance
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between p(t) and the stationary distribution to decrease by a factor of e. Here, the distance
is measured in terms of total variation (TV) distance (although nearly any norm will do),
where the total variation dry distance between two probability vectors 5t and 7 on the same

space ‘H measures the maximal error when approximating 7 by b to predict an event h, ie,
dyy (by, @) = ||by — 7| = sup |bi(h) — 7(R)]. (2.6)
hCH
Hence, dry is between 0 and 1. For the asymptotic mixing time 7,,,, we have
A = g7t/ = T, =|In(\)|7}, 2.7)

as 0 < Ay < 1 under our ergodicity assumption.
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Chapter 3

Introducing Graph Cumulants:
A Principled Framework for

Quantifying Network Structure

Simplicity does not precede complexity, but follows it.

—— Alan Perlis,

Epigrams on Programming

This work is a collaboration with Lee M. Gunderson

and is part of a co-authored manuscript under preparation.

3.1 Abstract

In an increasingly interconnected world, it becomes imperative to understand and summarize
the structure of these networks. However, this task is nontrivial; proposed summary statistics

are as diverse as the networks they describe, and a standardized hierarchy has not yet
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been established. In contrast, distributions of vector-valued random variables admit such a
description in terms of their cumulants (eg, mean, (co)variance, skew, kurtosis). Here, we
describe the natural analogue of cumulants for networks. This notion is general, seamlessly
incorporating additional information often present in real networks, such as directed edges,
node attributes, and edge weights. The proposed framework provides a principled method
for quantifying the propensity of a network to display arbitrary substructures (such as cliques
to measure clustering), and allows one to meaningfully compare networks of different sizes
and edge densities. Moreover, it gives rise to a natural hierarchical family of maximum
entropy models for networks. This family enjoys all the theoretical advantages associated
with exponential random graph models (ERGMs), without suffering from their common

practical pitfall known as the “degeneracy problem”.

3.2 Motivation

The power of natural science relies on the ability to find abstract representations of complex
systems and describe them with appropriate summary statistics. For example, using the
pluripotent language of graph theory, the field of network science distills a variety of systems
into the entities comprising them (the nodes) and their pairwise interactions (the edges), ie,
networks/graphs. Remarkably many systems, which at the surface appear to be completely
unrelated, naturally admit such a description [[160]: physical (eg, electrical circuits [12], the
cosmic web [64]], Feymann diagrams [79]]), biological (eg, brains [162]], food webs [[148],
protein interactions [9]), social (eg, friendships [229], affiliations [31]], collaborations [20]),
and technological (eg, transportation networks [23]], financial transactions [21]], the internet
[981]).

As the field of network science developed, several recurring themes were noticed

[59) 114, [172]. Among the most well-known are: sparsity [174] (only a small fraction of
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all possible connections exist); high clustering [173]] (tightly connected groups of nodes);
scale-free degree distributions [13] (most nodes have few connections and a few nodes
have many); and the “small-world” phenomenon [230] (most pairs of nodes are only a few
connections away from each other). As a consequence, real networks are often analyzed with
measures tailored to capture these properties [[77, 92, [72] and models are often chosen to
mimic some set of them [230, 13} 163}, 145]]. However, network statistics are often intertwined
[71L179]], for example, decreasing sparsity tends to promote both clustering and small-world
properties. Moreover, many models, with different mechanisms [[199, 107, 30, 129, 239,
435, 1137,149,1129], can reproduce similar sets of these “universal” characteristics. It is not
currently clear how to compare between different network models (nor their associated
statistics) within a single principled framework. A standardized hierarchy of descriptive
network statistics and associated null models is needed.

To this end, we draw inspiration from the classical notion of cumulants of a random
variable: a hierarchical sequence of summary statistics that efficiently encodes the underlying
distribution [222, 196, 91]. While other hierarchical descriptions exist, cuamulants are the
natural choice due to their many desirable features [196, 91, 223] 97, 39]. For example,
they are directly relevant to the fields of statistical and particle physics [[128, 144} [165].
In particular, their unique additive nature when applied to sums of independent random
variables [196] is integral to foundational results in probability and statistics, such as the
central limit theorem and its generalizations [97, 91]]. Moreover, the lower-order cumulants
have intuitive interpretations. The first two orders, the mean and variance, correspond to
the distribution’s center of mass and its spread around it, and are taught in nearly every
introductory statistics course [96]. The next two orders have likewise been given unique
names (skew and kurtosis), and are useful to describe data that deviate from normality,
appearing in a variety of applications, such as finance [93]], economics [226] and psychology

[28]]. Indeed, cumulants are essentially universally used by the statistics community.
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By generalizing the combinatorial derivation of cumulants [210, 211} 128], we derive
the analogue for networks, which we refer to as graph cumulants. We first show how they
give rise to a natural hierarchical family of maximum entropy null models for networks
(Section [3.6). We then demonstrate their usefulness as intuitive statistical measures of the
propensity of a network to display substructures of interest, allowing for systematic and
meaningful comparisons between networks (even with different sizes or edge densities,
Section . Finally, we describe their natural extension to networks with additional
properties, applying this formalism to real networks containing directed edges, node
attributes, and edge weights (Section[3.8). We also provide a publicly available code that
computes these graph cumulants[] For ease of exposition, we first introduce our framework
for the case of simple graphs, ie, unweighted, undirected networks with no self-loops or

multiple edges.

3.3 Graph moments

The notion of cumulants of a real-valued random variable is more easily describable by first
considering its moments (ie, the expected value of its powers). Real networks may be viewed
as graph-valued random variables, and graph cumulants are likewise better understood by
first considering graph moments.

To motivate our definition of graph moments, consider a network GG with n nodes, and
the most elementary measurement one can take of it, ie, that which provides the smallest
nonzero amount of information. This measurement is a binary query, which yields 1 if

an edge exists between a random pair of nodes in G, and 0 otherwiseﬂ At first order, we

'The code will be made available when this work is officially published in a peer-reviewed journal.

20One might consider measuring a random node instead. However, the presence of a node per se does not
give any new information. On the other hand, querying the degree of a node yields an integer that provides
information about all of its edges, thus containing more information than the binary result from a query of a
single edge.
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consider repeated observations of a single such measurement. We define the first-order
graph moment /.,, (the “mean”) as the expected value of this quantity, ie, the counts of edges
in GG normalized by (;‘), the maximum possible number of connections between these nodes
(ie, the counts of edges in the complete graph with n nodes). Hence, the first-order graph
moment of a network G is equal to its edge density.

Expanding upon this notion, we define the second-order graph moments. We again
consider a binary query, but now about the state of two potential connections. This query
yields 1 if G contains edges between both pairs of nodes, and 0 otherwise. We now must
distinguish between two cases: when the two edges share a node, thereby forming a wedge
(t49); and when they do not share any node (11,,). Each case is associated with a different
second-order graph moment, which we analogously define as the counts of the associated
subgraph in G, normalized by the counts of this subgraph in the complete graph with n

nodes

n! n!
I and S

> 2(n—3 _’4)!, 1‘€SpeCtively,

Likewise, we define an r"-order graph moment for each of the different configurations
that 7 distinct edges can form. Again, 4, is defined as the counts of the subgraph g in G,
normalized by the counts of this subgraph in the complete graph with n nodes. Hence, there
is an r"-order moment for each of the nonisomorphic subgraphs with exactly r edges (see
Figure [3.1] for the subgraphs associated with graph moments up to third order).

The set of graph moments of a network G (or of a distribution over networks, when G is
a graph-valued random variable) up to order r induces a hierarchy of descriptions of G with
increasing precision. In Appendix [A.I] we provide a spectral motivation for this hierarchy
of graph momentsE]

The scalability of our framework is determined by the computational complexity

associated with counting the relevant connected subgraphs, as these imply the counts

3This description provided the initial motivation for this project. It was discovered when studying the
theory of MCMCP over graphs (Chapter@ and attempting to meaningfully describe the results from ChapterE}
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Figure 3.1: Subgraphs associated with graph moments. The graph moment p,, of
a network G is defined as the counts of the subgraph ¢ (with r edges), normalized by
the counts of this subgraph if connections were present between all pairs of nodes in G.
Displayed here are the subgraphs g associated with the graph moments up to third order
for simple graphs. The full set of r"-order moments contains all subgraphs with exactly r
edges, including disconnected subgraphs.

of the disconnected subgraphs (see Section [3.10.1|for details). This is an important fact, as
the counts of the disconnected subgraphs are generally orders of magnitude larger. Moreover,

we can leverage numerous methods for efficiently counting connected subgraphs [68, 85, [1]].

3.4 Graph cumulants

As the density of smaller subgraphs (eg, edges) increases, the appearance of larger subgraphs
will clearly also tend to increase. Hence, we would like a measure that captures the difference
between the observed value of a given graph moment and that which would be expected
due to graph moments of lower order, so as to quantify the propensity for a specific network
substructure (ie, subgraphs). Cumulants are the natural quantities with this desired property.
For example, the variance quantifies the intuitive notion of the “spread” of a distribution

(regardless of its mean), while the skew and the kurtosis reflect, respectively, the asymmetry
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and contribution of large deviations to this spread. We now generalize this notion to obtain
the graph cumulants.

While often defined via the cumulant generating function [97]], cumulants have an
equivalent combinatorial description. At order 7, it involves the partitions of a set of r

elements [210, [128]]:

o= 1L (3.1)

T€P, ber
where 4, is the 7™ moment, #,, is the 7™ cumulant, P, is the set of all partitions of a set of r
elements, 7 is one of these partitions, and b is a subset of a partition 7.

When generalizing this procedure to graph moments, the partitioning P, of the edges
must respect their connectivity (see Figure for an example). These expressions can
be inverted to yield the graph cumulants in terms of graph moments (summarized in

Appendix [A.3]and provided in our code).

S |~
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B : % B %) BB 3‘-‘.:
H3n = K3n T KoaKR1, T KoaKy, + Ko,Ky, + KY,

Figure 3.2: To expand a graph moment in terms of graph cumulants, enumerate
the unique partitions of the edges in the associated subgraph. Displayed here is the
third-order graph moment associated with the 3-line subgraph (15) expanded in terms of
graph cumulants. The first term in the expression (k4-) corresponds to “partitioning” the
3-line graph into a single set of three edges, which inherits the connectivity of the original
3-line. The last term (x3,) corresponds to partitioning it into three sets, each with a single
edge. The remaining terms (k,x,) correspond to partitioning the 3-line into a set with one
edge and a set with two edges. This can be done in three different ways: in two cases (the
two Kok, terms), the set with two edges has them sharing a node; and in one case (the
Kqykq, term), the set with two edges has them not sharing any node.

Essentially, the defining feature of cumulants is their additive nature when summing

independent random variables [196], 91} [66]. In Section [3.10.4] we show that the graph
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cumulants of independent graph-valued random variables have the same additive property

for a natural notion of summing graphs.

3.5 Unbiased estimators of graph cumulants:
Inference from a single network

Thus far, we did not make a distinction between the graph moments of an observed network
(G and those of the distribution G from which this network was sampled. This is because,
in a sense, they are the same: (1, (G)) = j,,(G) (where the angled brackets (-) denote
expectation with respect to the distribution G), a property known as “inherited on the average”
[223]].

However, for cumulants, this distinction is important. Cumulants of a distribution
are defined by first computing the moments of the distribution, then converting them to
cumulants (as opposed to computing the cumulants of the individual samples then taking the
expectation of those quantities). Due to the fact that the cumulants are nonlinear functions
of the moments, they are in general not preserved in expectation, ie, they are not inherited on
the average [I84]]. For example, consider a sample of n observations from a distribution over
the real numbers. The variance of these observations gives an estimate whose expectation
is less than the variance of their underlying distribution, and one should multiply it by
the well-known correction factor of —*-. Indeed, just as neglecting the factor of —* for
the sample variance yields a biased result, if one simply uses the expressions given in
Appendix [A.3] then (r,(G)) # k().

For higher-order cumulants, the generalizations of this finite sample size correction factor
are known as the k-statistics [84]. They provide minimum-variance unbiased estimates

of the cumulants of the true underlying distribution using a finite number of observations
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[83L1117,1133,1132,1131]. In most applications [14,[172], one wishes to estimate a probability
distribution over networks after observing only a single network. Thus, we desire analogous
unbiased estimators for the graph cumulants of the underlying distribution from which the
single observed network was sampled. In Section [3.10.5 we describe a procedure to obtain
these unbiased estimators for graph cumulants, as well as their variance (Appendix [A.2). In
particular, we derive the exact expressions for the unbiased estimators of graph cumulants
up to third order, as well as the variance for first order.

Deriving the expressions for the unbiased graph cumulants and their variance is a
promising avenue for research (see Section[3.10.6) This would allow for principled statistical
tests of the proclivity (or aversiveness) for arbitrary substructures without requiring one to
explicitly construct a null model and sample from it (a procedure that is in general quite
computationally expensive, and is one of the main obstacles when analyzing real networks
(44,1179, [194]).

Moreover, we now discuss how these unbiased graph cumulants can be used to construct

a principled hierarchical family of network models (see Sections[3.10.7|and [3.10.8| for more

details).

3.6 A natural hierarchical family of network models

A ubiquitous problem, arising in many forms, is that of estimating a probability distribution
based on partial knowledge [43| 218, 192, 110, 142} 159} [153]. Often, one has a set of
properties that the desired distribution should have, but the problem is typically highly
unconstrained. The maximum entropy principle [119, 120] provides a natural prescription:
of the distributions that satisfy these constraints, choose the one that assumes the least

amount of additional information, ie, that which maximizes the entropy. For example, when
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modeling real-valued data, one often uses a normal distribution, the maximum entropy
distribution (over the reals) with constrained mean and variance.

The analogous distributions for networks are called exponentia]ﬂ random graph models
(ERGMs). These models are used to analyze a wide variety of real networks [44} 203,
216,150, 182, 141, 229|106, [142]]. While it is possible to use any set of constraints in an
ERGM, a common choice is to enforce that its expected counts of edges and of other
context-dependent substructures (such as the wedge or triangle for social networks [194])
are equal to their counts in the observed network.

Unfortunately, ERGMs of this type often result in pathological distributions, exhibiting
strong multimodality, such that typical samples have properties far from those of the observed
network they were intended to model. For example, the sampled networks are often either
very dense or very sparse. This phenomenon is known in the community as the “degeneracy
problem” [52]]. Much effort has gone into understanding this obstacle [1235} 124, 123}, [52]],
and while some approximate remedies have been proposed [109, 204, 208], a principled and
systematic way to alleviate degeneracy has thus far remained elusive.

Based on our framework, we propose a hierarchical set of constraints which specify
a family of ERGMs that is immune to the degeneracy problem (see Figure [3.3| and
Section [3.10.8]for details). Specifically, our procedure for selecting an ERGM of order 7/
based on a single observed network is as follows (see Section [3.10.7] for details): /) Use
the observed network to compute the unbiased estimators of all graph cumulants up to
some order r’ (the expressions are provided in Section and included in our code); 2)
Convert these unbiased graph cumulants into the desired graph moments of the ERGM using
the standard formulas (equation (3.34), the expressions are also provided in Appendix [A.3|

and included in our code); and 3) Fit an ERGM that has these moments in expectation.

“In fact, any probability distribution in the exponential family is a maximum entropy distribution for a
given choice of base measure and set of constraints. These models have been extensively studied and are
widely used due to their numerous theoretical and practical advantages [7]].
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To the best of our knowledge, currently implemented ERGMs do not include all the
subgraph counts (or equivalently moments) up to some order /. This is perhaps due to the
fact that not all of these subgraphs are deemed important to model the observed network,

or because disconnected subgraphs are not usually thought of as substructures (or “motifs”

[26]).

o

ERGM(py, p1a4)
(degenerate)

ERGM(NM Fons floy)
(our solution)

Probability density

Al ‘
110 360

22
Edge counts ¢, Wedge counts ¢,

Figure 3.3: Our proposed hierarchical family of ERGMs does not suffer from the
“degeneracy problem”. We computed the exact distributions over simple graphs on 10
nodes resulting from fitting two ERGMs to the same observed graph (shown on the right),
and plot the resulting distributions of edge counts (a) and wedge (ie, 2-star) counts (b).
To aid in visualization, we display continuous versions of the true discrete distributions.
Green corresponds to a network model frequently used in the literature: ERGM (1, fiop )s
the maximum entropy distribution with constrained expected counts of edges and wedges.
Purple corresponds to our analogous second-order model: ERGM(ty,, figp, fiy,), Which
constrains the expected counts of edges, as well as the (unbiased) counts of wedges and
two edges that do not share any node. We fit the model using the procedure described
in the Section with unbiasing parameter 7 = ﬁ Black lines denote the counts
in the observed network that these distributions are intended to model. In sharp contrast
to our proposed ERGM([i,,, fign, flo,), the currently used ERGM (1, f15,) can result in a
distribution whose typical samples are notably different than the observed network. This
is reflected in the fact that the green distributions have maxima far from their means. This
undesirable behavior, known as the “degeneracy problem”, tends to become even more
pronounced for larger networks. In Section [3.10.8] we explain why this occurs and why our

proposed family of ERGMs does not suffer from this problem.
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3.7 Quantifying the importance of network substructures

3.7.1 Scaled graph cumulants

When considering different real-valued random variables, their cuamulants are often scaled
to yield dimensionless quantities that allow for interpretable comparisons. For example, the
relative error is defined as the standard deviation divided by the mean (m;/ */k,). Likewise,
we define the r-order scaled cumulant associated with the subgraph ¢ (with r edges) as

Rrg = Koy /K7 ,. While we will perform averaging and other computations using Rygs We Will
report the “signed” " root of the final quantity, ie, the real number with magnitude equal
to ‘/%Tg}l/ " and with the same sign as k.4 These scaled cumulants allow for a principled
comparison of the propensity of different networks to exhibit a particular substructure, even
when these networks have different sizes and/or edge densities.

To illustrate this point, we consider clustering, one of the hallmark features of many
real networks [229] 230]. This notion is frequently understood as the prevalence of triadic
closure (ie, triangles), and is often quantified by the clustering coefficient C', defined as
the probability that two neighbors of the same node are themselves connected. While this
quantity is easily expressed within our formalism as C' = fu5, /15, it is neither a cumulant
nor dimensionless. We propose that the scaled triangle cumulant k,, is a more appropriate

measure of clustering in networks, as demonstrated in Figure [3.4] (see Figure for the

natural extension to clustering in bipartite networks).
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Figure 3.4: The scaled triangle cumulant provides a principled measure of triadic
closure that is invariant to network size and edge density. We generated the symmetric
stochastic block model on n nodes with 2 communities, SSBM(n, 2, a, b), for a range of a
and b, for 128 (top plots) and 512 (bottom plots) nodes. The horizontal axis indicates the
level of assortativity: O corresponds to Erd6s—Rényi (ER) graphs (no community structure),
+1 to two disjoint ER graphs (only connections within communities), and —1 to random
bipartite graphs (only connections between communities). The vertical axis indicates the
edge density, in terms of average degree. a,c) Global clustering coefficient C,. b,d) Scaled
triangle cumulant <5,. For each set of parameters, we compute C, and <5, for each instance
of the model, and display the (signed) third root of the average value. While both measures
increase with assortativity, the clustering coefficient also increases with average degree and
decreases with increasing number of nodes. In addition, the scaled triangle cumulant has a
natural interpretation: a value of 0 indicates that the number of triangles is precisely what is
expected from the lower-order graph cumulants (manifestly true for the ER model), and a
value of —1 indicates that there are no triangles in the network (as is the case in bipartite
networks).
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3.8 Graph cumulants for networks
with additional properties

While it is possible to treat most networks as undirected, unweighted graphs, real networks
frequently contain more information. Our formalism naturally incorporates many such
augmentations. In general, the subgraphs associated with moments of order r are all
the unique (including disconnected) graphs with r edges, endowed with the additional
properties. The conversion to graph cumulants likewise respects this additional structure.
We now discuss the specific cases of directed edges, node attributes, and edge weights (see
Appendix for the case of hypergraphical networks), and illustrate their ability to quantify
substructures using real networks. In Appendix [A.3] we provide expressions for computing
some of these augmented graph moments and graph cumulants. For clarity, we consider each

of these properties individually. Combining these properties is relatively straightforward.

3.8.1 Directed edges

When analyzing a directed network, one must have graph moments that incorporate the
orientation of the edges. While one still simply considers the number of directed edges at
first order (as edge orientation only carries meaning when considered with respect to some
other structure), there are now five second-order moments. The wedge configuration (two
edges sharing one node) is now associated with three moments: one with both edges oriented
towards the central node, one with both edges oriented away from it, and one with an edge
towards and the other away. The relative orientation of two edges that do not share any node
cannot be determined, and therefore is still associated with a single moment. Finally, the
configuration of two reciprocal edges (ie, two nodes that are connected by edges in both

directions) is associated with the fifth second-order moment. The appropriate normalization
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is with respect to the counts in the complete directed graph, ie, that which has every pair of
nodes connected by edges in both directions. Figure [3.3]illustrates the additional structured

revealed by incorporating the directed structure of protein interaction networks.

- Original orientation
T~ Random orientation

AN AR DAL T ARR DA DDA

Figure 3.5: The graph cumulant formalism naturally incorporates directed structure.
We use the scaled cumulants of directed networks to analyze transcriptional regulatory
networks of protein interactions [27]] of: a) yeast (4441 nodes and 12873 edges), and
b) humans (3197 nodes and 6896 edges). As the number of directed subgraphs rapidly
increases as a function of order r, we only display the scaled cumulants for substructures
that are believed to be particularly important in such networks, namely, all the orientations
associated with the %y, K34, and k5. Error bars denote the mean and one standard deviation
for the same network with randomized orientations. Despite the marked phenotypical
differences between these two species, their regulatory networks display notable similarities.
In particular, within the triangular structures (K4, ), the feedforward (or transitive) structures
(k3,) are significantly more prevalent than the cyclic structures (/). Interestingly, within
the wedge structures (<, ), there is a higher prevalence of a central protein regulating many
others (k,,). While proteins that regulate each other display a propensity to both regulate
the same other protein (k,4). Hence, for a given protein that interacts with many others, if
the other proteins do not interact with each other, then the given protein has a propensity
to regulate both of them. However, if the other proteins do regulate each other, then the
propensity is for those proteins to regulate the given protein.

3.8.2 Node attributes

Often, the nodes of a network may be categorized via their attributes (eg, demographics

for social networks). The graph moments of such networks are defined by endowing the
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subgraphs with same attributes. For example, consider the case of a network in which
every node has one of two possible “flavors”: “charm” and “‘strange”. There are now three
subgraphs associated with the first-order moments: an edge between two “charm’ nodes,
an edge between two ‘“‘strange” nodes, and an edge between one of each. To compute the
moments, we normalize by their counts in the complete graph on the same set of nodes: here,
(”2“‘) , (”5“) , and neyngy, respectively. Figure we analyze a (binary) gendered network of
primary school students [215], illustrating how incorporating node attributes can elucidate
the correlations between node types and their connectivity patterns.

Bipartite networks (see Figure are a common special case of networks with node
attributes [[170], where the nodes are assigned to a binary category and edges can only
occur between nodes in different categories (eg, authors and publications [37], plants and
pollinators [47]]). The computations are essentially the same; the only differences are that
unrealizable subgraphs are not considered, and the appropriate normalization is with respect

to their counts in the complete bipartite graph K, For example, now there is only

chTlstr *
one first-order moment (an edge connecting a “charm” to a “strange”), and there are two
second-order wedge moments: a “charm” node connected to two “strange” nodes, and a

“strange” node connected to two “charm” nodes.
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Figure 3.6: Including node attributes reveals additional structure. We use the scaled
graph cumulants of weighted networks with a binary node attribute to analyze a social
network (222 nodes and 5364 edges) of interactions between primary school students during
one school day [215]], with edge weights proportional to the number of interactions between
pairs of students and with node attributes corresponding to their (binary) sex. Purple nodes
indicate female students, green nodes indicate male students, and error bars denote mean and
one standard deviation of the same network with the sex of the students randomly permuted.
a) The three first-order cumulants. b) The six second-order scaled wedge cumulants. c)
The four third-order scaled triangle cumulants. The first-order graph cumulants (ie, the
density of edges between nodes of the indicated type) reveal a symmetric preference for
homophily between the sexes, an effect well-documented in the social science literature. As
all second-order scaled wedge cumulants are positive, we can infer a preference for hubs
(ie, nodes with degree notably larger than the average). Likewise, as all third-order scaled
triangle cumulants are notably positive, we can infer a preference for triadic closure, an
effect also seen in many social networks [229,1194]. While there does not appear to be much
of a difference between the sexes at second order, the third-order scaled cumulants suggest
that triadic closure is more prevalent when more participants are female.

3.8.3 Edge weights

To motivate the definition of graph moments for weighted networks, consider an unweighted
network as equivalent to a complete weighted network with edge weight equal to 1 if
there is an edge, and O if there is not. If the subgraphs are counted with multiplicity equal
to the product of the edge weights that comprise them, the moments of this weighted
complete network are equal to those of the original unweighted network. Indeed, this

equivalence naturally arises when considering the notion of summing graph-valued random
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variables (see Section|3.10.4), and remains consistent for real-valued edge weights [160].
The normalization is the same as in the unweighted case, ie, divide the (weighted) count of
the relevant subgraph by the counts of this subgraph in the unweighted complete network
with the same number of nodes. Hence, weighted networks may have moments greater than
one. In Figure we analyze a weighted network of social interactions [116]], illustrating
how the incorporation of edge weights can increase the signal and even change the resulting

interpretations.
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Figure 3.7: Incorporating edge weights can increase the signal and possibly change the
resulting interpretations. We use the scaled graph cumulants for weighted networks to
analyze a social network (410 nodes and 2765 edges) of face-to-face interactions during a
12-hour exhibition on infectious diseases [116], with edge weights proportional to the total
time a pair of people spent interacting. The vertical axis corresponds to the value of scaled
graph cumulants for the weighted network (in dark purple) and for the same network but
unweighted (in light purple). The scaled cumulants associated with clustering (ie, K3, and
Keg) Increase when using the true edge weights. Conversely, many of the others become
smaller, in particular, /4, and k4, , both of which are associated with power-law properties
of the degree distribution. The most notable deviation occurs for <, ; it is positive in the
unweighted network, but negative in the weighted network. This negative cumulant could
be interpreted as an anticorrelation between triadic closure and people who interact with
many others, not unreasonable for such an exhibition: the hosts are likely to talk to many
different people, whereas groups of visitors tend to interact amongst themselves.
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3.9 Discussion

In this work, we generalize the classical notion of cumulants to networks, thus providing
a principled hierarchical framework within which different network models and their
associated statistics may be systematically compared. Moreover, we provide a procedure
for deriving unbiased estimators of these graph cumulants (analogous to the k-statistics
(841183, 1117, 133,132, [131]]). We also show how the formalism naturally extends to networks
with additional structure, giving specific examples for directed edges, node attributes, and
edge weights (Figures and [3.7).

We illustrate the utility of this framework by considering two major challenges in network
science, namely, the generation of null models of networks [194,(179], and the quantification
of the propensity of a network for various substructures [237, 26]. In particular, we describe
a hierarchical family of maximum entropy network models that controls the “degeneracy”
problem (Figure [3.3)), providing a principled prescription for obtaining distributions that are
clustered around the values they intend to model. As a concrete example, we show how the
scaled graph cumulants can be used as an interpretable measure of clustering for both simple
(Figure and bipartite (Figure networks, even when the networks have different
sizes and edge densities. Aside from their mathematical interest, graph cumulants could aid
in a wide range of other practical applications. We now highlight two such applications that
we believe could be particularly impactful. Another application, namely modeling human
priors over graphical representations of naturalistic tasks, is provided in Chapter [5]

First, as previously mentioned, the expressions for the unbiased estimators and their
variance can be leveraged to perform statistical tests to measure the significance of arbitrary
substructures without the need for constructing and sampling from a network null model.
Deriving and implementing these expressions offers a principled, systematic, and highly

efficient way to analyze networks with arbitrary metadata (see Section [3.10.6).
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Second, the field of artificial intelligence has recently devoted much attention on devising
principled ways to efficiently utilize graph-structured data [38, 41, 40, 88, 104, 134 228,
100, (182}, 151}, [139], and local graph cumulants (see Section [3.10.3)) offer a promising tool
for this endeavor. For example, for node classification problems [99, 134, 228, [100]], one
could use the local graph cumulants of each node as the feature vectors for a clustering
algorithm. Moreover, one could then recursively use the class assigned to the each node
to compute the new local graph cumulants (augmented with these node attributes, i.e., the
classes) as new feature vectors for the clustering algorithm.

The introduction of graph cumulants opens a wide avenue of research, and has the
potential for addressing major issues in network science and related fields, such as machine

learning on graph-structured data.

3.10 Derivations and Methods

3.10.1 Efficiently computing graph moments

To provide an intuition as to why disconnected subgraph counts are derivable from connected
subgraph counts, consider the case of second-order moments for simple graphs. From first
order, one has the counts of edges in the network, ¢, = (Z) {t1,- Now, consider all unordered
pairs of distinct edges. Each pair corresponds to a single second-order count: either of a
wedge, or of two edges that do not share a node, so (62/) = ¢, + ¢,. Hence, the count of two
edges that do not share any node c, is directly derivable from the count of edges ¢, and the
count of wedges c,.

A similar argument applies to all orders. For instance, at third order, one obtains relations
for the disconnected subgraphs (ie, three edges that do not share any node, and a wedge and

an edge that do not share any node) by considering all pairs of an edge and a wedge that do
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not share an edge, as well as all triplets of distinct edges. This leads to the expressions:

cale, —2) = cp + 3cp + 3¢, + 2¢

C
(3:) =c,+cytc +entep

We have algorithmically derived the expressions up to sixth order and incorporated them in
our code.

We now discuss the scalability of counting the instances of a (connected) subgraph g with
n' nodes in a network G with m edges and n nodes. The complexity of a naive enumeration
of the (nf—;w potential node mappings scales as O(n™'). However, there exist notably more
efficient algorithms for certain subgraphs (such as triangles, stars, and cliques), especially
when G has particular properties, such as sparsity [26, [70]. For example, the worst-case
computational time complexity for counting n’-cliques is known to be at most O (n'm"’?)
time [57]. The counts of the r-stars are precisely proportional to the ™ factorial moments
of the degree distribution, and thus can be computed as quickly as the degree distribution,
namely in O(m) time. Moreover, some of these algorithms can be substantially accelerated
through parallel computation and approximate values can be obtained by stochastic methods.
Asymptotics aside, from a pragmatic perspective, Pinar et al. [183]] showed that exact
counting of all connected subgraphs with up to 5 nodes can be done for networks with tens

of millions of edges in minutes on a commodity machine.

3.10.2 Python module for computing graph cumulants

We provide a python module that computes the graph moments and graph cumulants (as well
as their unbiased counterparts). We use the python package igraph [67] to count instances

of subgraphs in a network.
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In conjunction with the symbolic computation available in Mathematica [231]], we
automatically derived the expressions for the counts of disconnected subgraphs in terms of
the connected counts (see Section[3.10.1)), as well as the expressions for converting graph
moments to graph cumulants (see Appendix |A.3).

Our python code contains the expressions to obtain graph cumulants up to: sixth order
for undirected unweighted networks, fifth order for undirected weighted networks (plus a
single K at sixth order), fifth order for directed unweighted networks (plus a single K at
sixth order), subgraphs of K, , for bipartite networks, and subgraphs of K5 for networks

with binary node attributes.

3.10.3 Local graph cumulants

Graph moments and graph cumulants are essentially properties of the network as a whole.
However, for tasks such as node classification [99, (134, 228, [100] and link prediction
[155, 207,16, 1535]], one often desires quantities that depend only on the local neighborhood
(eg, the local clustering coefficient of the node [173] as compared to the global clustering
coefficient of the network). Here, we describe how to derive local graph moments and
cumulants associated with a node, providing the expressions necessary to compute the local
triangle cumulant.

We define the local graph moments of a node as the density of rooted subgraphs with
this node as its root. For example, for simple graphs, there are now two first-order moments.
The first is associated with an edge between the root node and another node, and is therefore
the degree of the rooted node, normalized by its degree in a complete graph on the same

number of nodes:
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where the star denotes the rooted node. The second first-order moment is associated with
an edge between two nodes, neither of which are the root node. Thus, it is the counts of
edges that do not use this node, normalized by this count in the complete graph on the same

number of nodes:

Cx
Px = iy
G
Likewise, one has:
c
__ 9
Hor = 2(71;1) )
c
Hax = ﬁ
2

The definition of local graph cumulants follows the same procedure as before, now

taking care to incorporate the presence of this rooted node, ie,

Fisn = lan — Hopbys = 2oz flay + 2003r it - (3.2)

The scaled local triangle cumulant is likewise defined as

- K
Frgp = —522—. (3.3)
Hoyrby =

A similar procedure can be used to obtain local graph cumulants associated to the
edges, where instead of designating a rooted node, one designates an edge. This could be

particularly useful for link prediction problems.
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3.10.4 Graph cumulants are additive

Essentially, the defining property of cumulants is their additive nature when summing
independent random variables [196] 91 [66] (eg, Var(X + Y') = Var(X) + Var(Y") when
X and Y are independent). In this section, we first define a natural notion of “summing”
graph-valued random variables G, G,, ... (all with the same number of nodes), then we
show that the graph cumulants of these distributions sum when the samples from them are
independent.

As with real-valued random variables, we consider summing the random variable G and
not a particular instantiation G. For ease of explanation, consider a single network G to
be the random variable G with a delta function as its probability distribution (we refer to
such a distribution as a network). As the distributive law holds, our treatment generalizes to
arbitrary distributions.

There are a variety of operations that compose two networks, such as the disjoint
union and a variety of graph products [175]]. Here, we consider the sum of two networks
(with the same number of nodes) G, + G, to be at the level of their adjacency matrices,
defined by simply adding the entries component-wise. In general, the same network can
be represented by many adjacency matrices, thus we must assign equal probability to each
of these possibilities for the operation to be well-defined. In particular, if a network G
with n nodes is representable by an adjacency matrix A = {aij}, then one distributes the
probability associated to this network uniformly over all matrices A’ = {a~()~(;)} for all
permutations 7 of {1,...,n}. Thus, when summing two networks, one considers all the
ways that their sets of representative adjacency matrices could sum. The result is a new
graph-valued random variable over weighted networks.

As this summation yields a distribution over weighted networks, to show that their graph

cumulants sum, we must generalize the notion of subgraph density to this weighted networks
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(itself a useful extension). Previous works have considered several ways to generalize
counts of substructures of unweighted networks (eg, triangles to measure clustering) to
the weighted case [177, (16, 201} 18]. Within our framework, the consistent prescription is
to treat a weighted edge as a collection of multiple edges that sum to its weight. Thus,
when counting subgraphs, one should consider each instance with multiplicity equal to the
product of the edge weights that compose it [160] (as opposed to considering each instance
of a subgraph equally). The normalization to graph moments is the same as before, ie, the
counts of the subgraphs in the unweighted complete network (thus, the moments may now
be greater than one). Likewise, the conversion from graph moments to graph cumulants
remains identical (and the expressions are included in our code).

With the definitions for summing graph-valued random variables and how to compute
moments and cumulants on the (weighted) output, we can now state the main result of this
section: For two independent graph-valued random variables over n nodes, G, and G,, the

graph cumulants of their sum is the sum of their cumulants, ie,

Iirg(gl + 92) = /ng(g1) + Krg(g2)7

which by induction holds for summing any number of independent graph-valued random
variables.
To demonstrate how to verify this property, we consider the specific cases of

K1/ Kopns and rs,. Clearly, for the first moment:

11/(Gy + Go) = 111,(Gy) + 111,(Go), (3.4)

as edge weights simply sum and the normalization remains the same.
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For j1,,, one must consider the 22 ways in which a wedge could be formed: both edges
from G, giving 1,1 (G, ); both edges from G,, giving 1,5 (G, ); a “left” edge from G, and a
“right” edge from G,, giving 1,,(G,)1t1,(G,); and a “left” edge from G, and a “right” edge

from G,, giving 111,(G,)41,(Gy). Thus,

on(Gy + Gy) = ton(G1) + ton(Gy) + 2p1,(Gy ) 111,(Gs) (3.5)

Substituting (3.4) and (3.5) into the expression for x,,, we have

Kon(G1 + Ga) = pion(Gy + Go) — p1/(Gy + 92)2
= (NQA(gl) + p1on(Gy) + 2#1/(9,1)#1/(92)) - (Nu(gl) + Nl/(%))z
= Hon(G1) + Han(Gs) — H%/(gl) - M%/(QQ)

= Fgn(G1) + Kan(Gy),

as desired.

Likewise, for j15,, one must again consider the 2° ways in which a triangle could be
formed: all edges from G,, giving 3, (G, ); all edges from G,, giving 13, (G,); a wedge from
G, and an edge from G, (occurring for three configurations), giving 3o, (G; ) it1,(G,); and

a wedge from G, and an edge from G, (again occurring for three configurations), giving

3ton(Ga)pt,(Gy). Thus,

t3n(G1 + Go) = 13a(G1) + 134 (Ga) + 3pian(Gy ) 111/(Ga) + 3hign(Ga) 1, (G)- (3.6)

Substituting (3.4)), (3.5) and (3.6) into the expression for r,, we again find that

Kan(G1 + Ga) = K3a(G1) + K3a(Ga),
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as desired.

3.10.5 Unbiased graph cumulants

In this section, we discuss the desired properties of unbiased estimators &,, of graph

g
cumulants, focusing our discussion on simple graphs. We describe the procedure for

deriving these k.., using the two second-order cumulants as an example. We also provide

rg>
the resulting expressions up to third order.

Given a single network observation G, we desire estimators #,,(G) for the graph
cumulants of the distribution G that generated G. More specifically, suppose one generates
a maximum entropy distribution with graph cumulants equal to these &,,(G) up to some
choice of order r’. Consider sampling single networks from this distribution and computing
their #,,. We require that, for r < 7", the expectations (&,,) be equal to the cumulants .,
of the distribution itself.

In order to derive these &, , consider a large graph Gy with IV nodes (the “population”
network), where N > n. Randomly select a set of n nodes from GG, and observe the
induced subgraph G (the “sample” network). In the spirit of k-statistics [84], we seek
expressions that are invariant under this subsampling (ie, (,,(G)) = &,,(Gx)), and have
the appropriate limit (ie, #,,(Gn) — #,,(GN) as N — oc). The resulting infinite graph G,
is essentially equivalent to the distribution G over graphs on n nodes, ie, 5, ,(Goo) = £,,(9).

We now describe our procedure applied to the two second-order graph cumulants. We

consider expressions of the form
fiog = A(n)piap + B(n)pi, + C(n)py, 3.7)

and determine how the functions A(n), B(n), and C'(n) should change when removing a

single random node. This provides a recursion relation, and determines these functions up

60



to a few constants, which are then chosen so as to agree with «,., as n — co. Note that it
is not necessary to include a term with y,, in this expression, as it can be expressed as a
function of the other terms (see Section [3.10.1).

We now determine the expectation of each of the terms (fiy, 113, and j1;,) when removing
a single random node from G. The easiest term is j,,. Let ¢, be the counts of edges in
the original graph on n nodes (as usual), d; be the degree of node i, and ¢ as the counts
in the graph with this single node removed. Clearly, ¢, = ¢, — d,, so (¢) = ¢, — (d;). As
(d;) = %, we obtain (cj) = (1 — 2)c,. Dividing by the edge counts in the corresponding

_ )

complete graph, we obtain (y},) = &) (1 — 2)py, = 1y, In fact, this is general: all graph

moments are preserved in expectation under subsampling of the nodes,

<:U’;“g> = :urg' (38)

Products of moments, however, are not necessarily preserved in expectation. Indeed,
() = (¢, — d,)?) = ¢ — 2¢,(d;) + (d?). Fortunately, (d?) is easily expressed in terms of

the wedge moment:

-2

= 2 ((d) — ()

thus, (d?) = 2ca + (d;) and (c*) = 2cn + (1 — 2)c? + 2¢,. Dividing by the appropriate

T n n

counts in the corresponding complete graph yields

2\ n(n—4) ,
(Hiy) = (n—1)(n—2) Hon + —(n oy pi + (n—1)(n— 2)2N1/-
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Therefore, the resulting recursion relations for A(n), B(n), and C(n) are:

4

A(n)=A(n—-1)+ e 2)B(n —1) 3.9
_n(n—4) .

B(n) = T B(n—1) (3.10)

4
Cn)=Cn—1)+ (n—l)(n—Q)QB(n_l)' (3.11)

The solution to equation (3.10) is
B n(n—1)

Bln) = b o5 (3.12)

Substituting equation (3.12) into equations (3.9) and (3.11)) yields

A(n) = b% +a, (3.13)
C(n) = bEZ - ;EZ — ;L; te (3.14)

To obtain k,,, we require that the n — oo limit gives the values corresponding to x,,

viz,
A—1, B —-1, C,—0.

Thus, the relevant constants are a, = 5, b, = —1, ¢, = 1, and R, is given by

2

. n+1 n(n —1)
(n—2)(n— 3)”1/'

A A s O

1+ (3.15)

Recalling that ¢, + ¢, = (62/) , we repeat the same procedure to obtain <,,. This case is a

bit less straightforward (although the result, ~,, = 0, is comparatively simpler). As n — oo,
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the number of pairs of edges in the network grows as (62/) = %4 u3,, while the number of
wedges is bounded by ¢, < %5 Therefore, the number of pairs of edges that do not share any
nodeis ¢, = % u2,(1 — O(1)). Thus, pp, = pi, + O(L), and #,, = O(1) — 0. Hence, the
(unique) coherent solution is a, = b, = ¢, = 0, thus k,, = 0. Indeed, the same result holds
for graphons (the natural limit of a sequence of dense graphs of increasing size [32, [161]]),
where it can be shown [160] that y,, — 13, and therefore k., — 0. More generally,
k,, = 0 for all disconnected subgraphs g.

To summarize, as with real-value random variable, the unbiased estimator of the

first-order cumulant is simply the first-order cumulant itself:
Ry, = [y, (3.16)

The unbiased estimators of the second-order cumulants are as follows:

. n+1 n(n—1) 9 2

= — — 3.17
/{2/\ n_g:uQ/\ (n_2)(n_3)1u1/+ (n_2)(n_3)lu1/7 ( )
- (3.18)
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And the unbiased estimators of the third-order cumulants are:

where

Rgp = Qi iy, + Qi)+ Qopfion + Q1 3, + Qong Hanthy
+ (L4 agp)pign + gty + gnptan,

Rgy = oy ply, + Qi)+ Qopfion + Q1 3, + Qo Hanthy
+ agppian + (1 + ag) g, + gnpan,

Foar = Qb + Q3 + Qonflon + Qi) + Qonytiantin,
+ Qgptan + Qgupian + (1 + agn) g

Rgn =0,

Rsy =0,

N 16
Vo (n—2)(n—3)(n—4)(n—5)’
N —12n(n —1)
W (n=2)(n=3)(n—4)(n—5)’
o 12(n + 3)
N (n=3)(n—4)(n—5)
2n?(n —1)?

X171 = (n—2)(n—-3)(n—4)(n—-5)’
W Bt 3n(n—1)
AL/ (n—3)(n—4)(n—-5)’

- 6n + 2

B (n=3)n—-4)(n—5)

- 6n + 2

34 (n—4)(n—75)’
12(n — 1)

BT D —5)
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In short, as the unbiased cumulants are polynomials in the moments, we consider the
expected changes in the relevant graph moments of a network G and their products when
removing a single random node from it. By equating these expressions, we obtain a recursion
relation for the coefficients of the polynomials. We solve these recursion relations using
Mathematica, fixing the undetermined constants such that the resulting expression agrees in

the n — oo limit.

3.10.6 Statistical inference without constructing an explicit null model

One can apply a similar procedure to the square of the unbiased cumulants. This results in a
recursion relation for their variance (see Appendix [A.2]for details).

The unbiased graph cumulants and their variance can be used to test whether the
observed network has a significant proclivity for a substructure g with r edges. In particular,
measure the moments of the observed network up to order 2r, and use these to compute the
unbiased cumulant #,,, as well as its variance Var(k,,). Suppose that &,, > 0 (potentially
indicating a proclivity for substructure g). To determine the statistical significance of this
assessment, compute the (squared) Z-score associated with the null hypothesis that ,, < 0:
Z,?g = %ﬁig) Likewise, if £, < 0 (potentially indicating an aversiveness for substructure

g), the squared Z-score expression is the same. If Z? < 1, one can conclude that the

rg ~>
observed network is ambivalent to substructure g. Conversely, if ng 2 1, one can conclude
that the observed network has a proclivity (or aversiveness) for substructure g, depending
on the sign of ,.,. This procedure can also be used to measure the similarity between two
networks, by applying a two-sample t-test to the pair of unbiased cumulants associated to
each particular substructure.

The standard conversion from a Z-score to a p-value tacitly assumes normality, which

does not hold in general. However, our procedure to obtain unbiased cumulants and their
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variance can also be used to obtain higher-order cumulants of the distributions of unbiased
cumulants (although the derivations become incredibly tedious). Future work on these
unbiased cumulants (and the cumulants of their distributions) could lead to principled
statistical tests of the proclivity (or aversiveness) for arbitrary substructures. Such statistical
tests are advantageous, as they do not require one to explicitly construct a null model and

sample from it (a procedure that is in general quite computationally expensive).

3.10.7 Fitting ERGMs using unbiased graph cumulants

We now describe how to infer a model from our proposed hierarchical family of ERGMs
using a single observed network G, specializing our discussion to simple graphs. In
particular, we consider ERGMs that have constraints on their expected counts of all
subgraphs (or, equivalently, their associated moments) up to some order r’. These

distributions have the following form:

1
P(G) = ZER,1.(G) exp <Z Bgcg<G>> , (3.32)
g
Z = |ER,u(G) exp| > By (G | (3.33)
G'eQ g

where Z is the normalization constant (or partition function); ER,, ,, is an Erd6s—Rényi
mode]El; 3, are the parameters (Lagrange multipliers) associated with subgraph g; ¢ (G) are
the counts of subgraph g in GG; and 2 is the space of all simple graphs on n nodes.

While an ERGM is specified by the desired expectation of statistics of interest (in this
case, subgraph counts/moments), the parameters needed to compute the distribution are

the §,, and in general must be solved for numerically. Moreover, the partition function

3The distribution over simple graphs with n nodes, in which the each edge occurs independently with
probability p. In particular, ER,, 1, is the uniform (ie, maximum entropy) distribution over all n X n binary

symmetric traceless matrices, and thus proportional to #(!G).
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Z often cannot be exactly computed, as the space of unique graphs over n nodes grows
super-exponentially with n (eg, on 10 nodes there are 12005168 [114]). However, there
exists a large body of literature on MCMC and variational techniques to efficiently
approximate this Z [141, 208].

Aside from the prescription to use all subgraph counts up to order 7’ (including
disconnected subgraphs), our proposed hierarchical family of ERGMs includes the

following three-step recipe:

1. Use the observed network to compute the unbiased estimators #,, of the graph
cumulants (up to some order ) of the underlying ERGM distribution (the expressions

are provided in Section [3.10.5|and included in our code).

2. Convert these unbiased cumulants into the target moments of the distribution f,.,

using the standard formulas to convert cumulants to moments, eg,

A A A2
Hopn = Kop T+ K7,

A s PN ~3
fign = Rgp + 3Ronky, + K1,

N A oA .2 A A2 4
gy = Ryx + 4Rz, Ry, + 3Roa + 6RopnRT, + K.

The general form is given by:

trg = Y 11 #iol, (3.34)

weP, bem

where P, is the set of partitions of the r edges, 7 is one of those partitions, b is a
subset of a partition, and g, is the subgraph formed by the edges in this subset (the

expressions are provided in Appendix and are also included in our code).
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3. Fit an ERGM that has these unbiased moments /,,, in expectation.

The use of these unbiased cumulants is a notable departure from the typical choice
of constraints for ERGMs, as we are now selecting a distribution with expected subgraph
counts different than those of the observed network (and are in general, not realizable by
any single network). Nevertheless, the ERGM distribution induced by this choice generates
samples that are appropriately clustered about the observed network (see Section [3.10.8] for

a detailed intuition).

Partially unbiasing a distribution

In some cases, it may not be appropriate to assume that the nodes of the observed network
were sampled randomly from a very large underlying network (the “population”). This is
particularly relevant when the observed network is small, or when it could feasibly represent
a significant fraction of the system of interest. For these cases, we introduce an adjustable
unbiasing parameter 7 € [0, 1], where 1 corresponds to the aforementioned “fully” unbiased
case, and 0 corresponds to using the original moments ., of the observed network (“no
unbiasing”). Essentially, instead of assuming that the underlying network is infinite, this
parameter controls its size (/V) relative to that of the observed network (n), defined as
n=1-%.

The procedure is essentially the same as before, with a modified second step. In
particular, one first computes the unbiased estimates of the cumulants using the moments

of the observed network (step 1 of our procedure):

x>

3.35
K eq. B16)-(B23) withn =n ( )

68



Then one uses these & in the inverse expressions, now using n = N:

" eq. 337)-(339) with n = N\ H (3.36)

where these inverse expressions (up to second order) are

[h/ = ’%1/7 (3.37)
R n—3. nn—1) 2 R
= — — 3.38
fon = T G D=2 T e D=2 (3.38)
R 1 #i .
Moy = —— (( ’ 1/> - #QAMQA) ) (3.39)
#, 2

where #, is the count of subgraph g in the complete network with n nodes (eg, the
denominators of equations (A.T0)—(A.21)) in Appendix[A.3).
Finally, one fits an ERGM that has expected moments f,., (step 3 of our procedure).
The limit n — 1 corresponds to N — oo, and agrees with the standard expressions
provided in Appendix[A.3] The limit 7 — 0 corresponds to N = n and generate an ERGM
that is more narrowly concentrated on the observed network G (eg, if one fits an second-order

ERGM, it will give zero probability to networks that do not have the same number of edges

as (7).

3.10.8 A geometric understanding

of the degeneracy problem of ERGMs

Degeneracy is essentially the appearance of large-scale multimodality in the ERGM
distribution; despite the fact that the expectation of subgraph counts of samples from this
distribution is equal to those of the observed network, typical samples from it have counts

vastly different from this average.
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Essentially, this arises due to the shape of the base distribution (ie, ER,, 1) as a
function of the statistics with constrained expected values [[109] (here the subgraph counts,

or equivalently, their graph moments). Recall that the ERGM distribution is given by
equation (3.32), ie,

p(G) x ER,, 1,(G) exp (Z 5gcg(G)> . (3.40)

Projecting this distribution to the space of counts (ie, summing the probability of all networks

with the same relevant counts), and taking its logarithm yields:

Inp(é) = In(ER,, () + G - &, (3.41)

where ¢ is the vector of relevant subgraphs counts (ie, those whose expectations are
constrained), 5 is the vector of their associated parameters, and we have dropped the
constant term.

Hence, to understand the behavior of p(G), it is geometrically instructive to look at the

shape of In (ERn’1/2> as a function of ¢ (see Figures and .
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(N ERGM(1y,, p10)

ERGM(1ty,, fion, fiay)

>

Figure 3.8: Using all subgraph counts up to second order allows for greater control
over the resulting distribution. a) When represented as a function of (u,, in, 1t,), the
density of ERq 1, occupies a 2D submanifold with extrinsic curvature. Three orthogonal
directions can independently control the edge counts (blue arrow), the wedge counts
(green arrow), and the spread in the edge counts (red arrow). b) In contrast, when
representing the distribution as a function of (u,, 11, ), one can only independently control
two of these quantities. When the counts of edges and wedges are the constraints, as
in ERGM( 1, p1,,), the spread in the edge counts cannot be controlled, and can result in
“degenerate” distributions with significant bimodality.
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Figure 3.9: A stereographic image of the (logged) base distribution in 3D space
(145 tins 11). Displayed is the log of the base distribution In(ER v, (s, itr, 1t,,)) embedded
in the space of all subgraph counts up to second order, ie, edges, wedges, and two edges
that do not share any node. To fully appreciate the stereographic effect, print the image
using either US letter size or standard A4 paper. Begin with the paper close to your eyes,
and allow your left eye to focus on the left image, while your right eye focuses on the right
image. Slowly move the paper away from your eyes, while maintaining focus on the middle
of the “three” images, until it is approximately 20-40cm away. The “middle” image should
be more apparent than those on either side, and its upper right should appear farther than
its bottom left. We assume an average pupillary distance of 63 mm, and remark that the
parallax has been decreased by a factor of ~2 to make it easier to overlay the two images.
Dark indicates high probability, and light indicates low. See also the animation here.

To provide intuition about this phenomenon and our proposed solution, here we
give attention to the commonly used (and easily visualizable) 2D model, denoted
by ERGM(y,, 115), which constrains the expected counts of edges and wedges in the
distribution to be equal to those in the observed network. For comparison, we consider our
second-order model, which additionally constrains the expected counts of pairs of edges
that do not share any node. We will discuss both the case when the expectation of these
three subgraph counts are constrained to be those of the observed network, denoted by
ERGM(,, i, ft,), and when they are constrained to be the equal to their unbiased values,
denoted by ERGM((ji,, fin, fi,)-

Consider the convex hull formed by all points representing realizable subgraph counts for

a single network in their respective 2D (for ERGM(y,, i1, )) or 3D (for ERGM (w1, fin, f1,)
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or ERGM(f1,, fin, f1,)) spaces (Figure . Any choice of target expected counts that is
within the convex hull may be realized by some ERGM in the corresponding class. However,
some choices of target values for the expected counts require degenerate distributions
(even without maximizing the entropy). For example, consider the constraints (c,) = %#,,
(cn) = %#A. Indeed, the only distribution that satisfies these constraints is an equal mixture
of the empty and complete networks (in a sense, the most “degenerate” distribution possible).
This motivates a restriction on the choices of target values, a natural choice being that the
target expected counts are those of the actual observed network!

Even with this restriction, ERGM(y,, 1) does not always concentrate around its target
values. This happens in particular when one chooses a network that lies along a concave
boundary of the support of In(ER,, 1,(c,, c1)). This is due to the effect of the linear term in
equation (3.41)), which must be chosen to “push” the distribution in Figure[3.8p in a direction
perpendicular to the blue arrow (towards the upper left). While this indeed increases the
number of wedges, it is inevitably coupled with a motion of the probability density toward
the “tips” of the distribution. Thus, the number of wedges and the spread in the number of
edges cannot be independently controlled.

In contrast, ERGM(p,, pn, 1t,) has an additional degree of freedom for 5 Thus, it is
able to independently control the expected number of edges and wedges as well as the
spread in the number of edges. However, if one chooses the triplet of target expected counts
to be those from the observed network, the resulting distribution necessarily concentrates
to a single number of edges. This is essentially due to the fact that all such triplets lie on
the boundary of the convex hull. For a fixed number of edges, the relationship between
the second-order moments is linear: #,/i,n + #,/45, = C. Additionally, the relationship
between the counts of edges and this invariant sum C' has a curvature that does not change

sign: C' = %(#3 ©3, — #,11,,). Thus, for any observed network, all distributions with expected

counts that match this network must only have support along this linear direction (ie, the set
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of triplets with the same invariant sum '), and therefore have the same number of edges
as the observed network. Thus, we have “solved” the degeneracy problem by essentially
specifying the number of edges. However, given the many sources of noise in real-world
network data, this solution is likely unreasonable for many applications.

In order to spread the number of edges, we would like our triplet of target expected
counts to be slightly in the interior of the convex hull, in the direction of the red arrow
in Figures [3.8 and 3.9] This may seem to be an unusual choice, as such target counts
are not realizable by any single network. However, this is indeed quite natural: even the
ER,, , distributions have triplets of expected counts that lie in this direction. The unbiased
graph cumulants derived in Section [3.10.5| provide a natural and consistent prescription for
obtaining such modified triplets of target expected counts.

We remark that not all observed networks result in realizable distributions (those with
modified triplets of target expected counts that lie outside the convex hull). However, this
occurs for networks that are unlikely to be observed when subsampling nodes from a large
network, such as regular graphs (ie, all nodes have exactly the same number of edges) or
nearly-regular graphs. From a pragmatic perspective, this is unlikely to be a problem as
real networks tend to not have such properties. In particular, as shown in Figure the
fraction of networks that result in such unrealizable triplets of expected counts decreases
as the number of nodes increases. Moreover, if one does observe a network for which this
is the case, the issue is often alleviated by use of an intermediate choice of the unbiasing

parameter 7 (see Section (3.10.7)).
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fraction of graphs, f,
that do not admit 2"-order ERGM

number of nodes, n

Figure 3.10: The fraction of “problematic” networks vanishes as n — oo. We
approximate the space of possible triplets of subgraph counts (c,, c,,c,) for networks
with 4 to 32 nodes. For a given number of edges ¢ € [0, (})], we evaluate min(c,) and
max(c,) over all networks with n nodes and e edges. We then include all integer-valued
triplets (c,, ¢, (62/) — ¢, ) within this range. For each triplet (¢,, c,, ¢,), we compute its fully
unbiased (7 = 1) moments, and convert to unbiased counts. We compute the convex hull of
the triplets of original counts, and report the fraction of triplets of unbiased counts that lie
outside of this region. Such triplets cannot be the expected moments of any distribution over
networks on this number of nodes. However, their corresponding networks are typically
extremal in the sense that some subgraph counts (such as c,) are maximized or minimized
given some lower-order conditions (such as fixed c,). The prevalence of such networks
decreases as the number of nodes increases, and is unlikely to occur in practice. However, if
one encounters such a situation, it can be remedied by reducing the unbiasing parameter 7
(such as, in Figure @)

3.10.9 Clustering analysis

As our formalism is able to incorporate additional information, such as edge weights,
directed edges, or node attributes, it provides a principled notion of clustering for any
combination of such cases, an active domain of research that has arguably not reached a
consensus. For instance, while several measures of clustering in weighted networks have
been proposed [[177, 116, 201, 8] (using, eg, maximum/minimum/averaging procedures), our

framework provides a self-consistent prescription: count subgraphs with a weight equal to
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the product of the edges that comprise them [160]]. Likewise, for directed networks, the two
third-order scaled triangle cumulants provide two measures for clustering: one with cyclic
orientation and one with transitive.

We illustrate the flexibility of our framework using simple graphs (Figure and
bipartite networks (Figure [3.11)). For bipartite networks, the extensions are somewhat
less straightforward, as now triangles are excluded. Indeed, several notions of clustering
have been proposed [181} 237, 42]. In general, these involve measuring the appearance of
4-cycles or 6-cycles in the network, similarly compared to the number of incomplete cycles.
In Figure we compare our scaled graph cumulant of the 4-cycle subgraph &, with
the clustering coefficient for the 4-cycle proposed by [193]], expressed in our framework as
Co = pan/ isn (analogous to the standard clustering coefficient). We show that our measure
is again more directly sensitive to the propensity for clustering, without the unnecessary

scaling with the overall edge density.
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Figure 3.11: A principled measure of clustering in bipartite networks. We simulated
a bipartite geometric graph model with two parameters, f and (d), which determine the
propensity for clustering (horizontal axis) and the edge density (vertical axis), respectively.
The model first divides the nodes into two groups and randomly places them on the unit
sphere. Each node may only connect to nodes from the other group, and only when they are
within a certain radius, such that the surface area it contains is a fraction f of the entire unit
sphere. Among these possible connections, a specified number of them are randomly chosen,
so as to match the desired average degree (d). a) Global bipartite clustering coefficient Cp
[193]. b) Scaled square cumulant % ,. For each set of parameters, we computed C and &
for each instance. We display C (left) and the (signed) fourth root of the average value &,
(right). Clustering is promoted when the proximity parameter f is small (right side of the
plots). While both clustering measures increase for decreasing f, the bipartite clustering
coefficient also notably increases with average degree, whereas the scaled square cumulant
is insensitive to such changes in edge density. In addition, as f approaches 1 (the fully
random bipartite limit), k, approaches 0, indicating no propensity for clustering.
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Chapter 4

Probing Global Structure:

Spectral Graph Reduction

Do not miss the forest for the trees.

—— Conventional Wisdom

4.1 Prologue

In the previous chapter, we characterized network structure from a local perspective,
building a hierarchical description based on the correlations between an increasing number
of connections. In this chapter, we attack this question from a dual perspective [[160].
Essentially, we seek reduced graphs in which the dynamics of diffusion processes are similar
to that of the original graph, thereby preserving its global structure. In what follows, we
formalize this goal and explain the work resulting from this project.

This work was done with Lee M. Gunderson and is published as a co-authored paper in
Advances in Neural Information Processing Systems (NeurlPS), 2019, under the title: “A

Unifying Framework for Spectrum-Preserving Graph Sparsification and Coarsening” [38].
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4.2 Abstract

How might one “reduce” a graph? That is, generate a smaller graph that preserves the
global structure at the expense of discarding local details? There has been extensive
work on both graph sparsification (removing edges) and graph coarsening (merging nodes,
often by edge contraction); however, these operations are currently treated separately.
Interestingly, for a planar graph, edge deletion corresponds to edge contraction in its planar
dual (and more generally, for a graphical matroid and its dual). Moreover, with respect to
the dynamics induced by the graph Laplacian (eg, diffusion), deletion and contraction are
physical manifestations of two reciprocal limits: edge weights of 0 and oo, respectively.
In this work, we provide a unifying framework that captures both of these operations,
allowing one to simultaneously sparsify and coarsen a graph while preserving its large-scale
structure. The limit of infinite edge weight is rarely considered, as many classical notions of
graph similarity diverge. However, its algebraic, geometric, and physical interpretations are
reflected in the Laplacian pseudoinverse L', which remains finite in this limit. Motivated
by this insight, we provide a probabilistic algorithm that reduces graphs while preserving
L', using an unbiased procedure that minimizes its variance. We compare our algorithm
with several existing sparsification and coarsening algorithms using real-world datasets, and

demonstrate that it more accurately preserves the large-scale structure.

4.3 Motivation

Many complex structures and phenomena are naturally described as graphs (eg, brains,
social networks, the internet, etc). Indeed, graph-structured data are becoming increasingly
relevant to the field of machine learning [40, 41, [102]. These graphs are frequently massive,

easily surpassing our working memory, and often the computer’s relevant cache [18]]. It
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is therefore essential to obtain smaller approximate graphs to allow for more efficient
computation.

Graphs are defined by a set of nodes V' and a set of edges £/ C V' x V between them,
and are often represented as an adjacency matrix A with size |V'| x |V| and density o |E|.
Reducing either of these quantities is advantageous: graph ‘“coarsening” focuses on the
former, aggregating nodes while respecting the overall structure, and graph “sparsification”
on the latter, preferentially retaining the important edges.

Spectral graph sparsification has revolutionized the field of numerical linear algebra and
is used, eg, in algorithms for solving linear systems with symmetric diagonally dominant
matrices in nearly-linear time [213}162] (in contrast to the fastest known algorithm for solving
general linear systems, taking O(n*)-time, where w ~ 2.373 is the matrix multiplication
exponent [150]).

Graph coarsening appears in many computer science and machine learning applications,
eg: as primitives for graph partitioning [198]] and visualization algorithm{] [LO1]; as layers
in graph convolution networks [41), 207]; for dimensionality reduction and hierarchical
representation of graph-structured data [[147, 56]; and to speed up regularized least square
problems on graphs [[105], which arise in a variety of problems such as ranking [171]] and
distributed synchronization of clocks [209].

A variety of algorithms, with different objectives, have been proposed for both
sparsification and coarsening. However, a frequently recurring theme is to consider the
graph Laplacian L = D — A, where D is the diagonal matrix of node degrees. Indeed, it
appears in a wide range of applications, eg: its spectral properties can be leveraged for
graph clustering [80]; it can be used to efficiently solve min-cut/max-flow problems [S8];

and for undirected, positively weighted graphs (the focus of this paper), it induces a natural

'For animated examples using our graph reduction algorithm, see the following link:
youtube.com/playlist?list=PLmfiQcz2q6d3sZutLri4ZAIDLgM_4K1p-.
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quadratic form, which can be used, eg, to smoothly interpolate functions over the nodes
[146].

Work on spectral graph sparsification focuses on preserving the Laplacian quadratic form
Z'LZ, a popular measure of spectral similarity suggested by Spielman & Teng [213]]. A key
result in this field is that any dense graph can be sparsified to O(|V'|log |V'|) edges in nearly
linear time using a simple probabilistic algorithm [212]]: start with an empty graph, include
edges from the original graph with probability proportional to their effective resistance, and
appropriately reweight those edges so as to preserve 'L within a reasonable factor.

In contrast to the firm theoretical footing of spectral sparsification, work on graph
coarsening has not reached a similar maturity; while a variety of spectral coarsening schemes
have been recently proposed, algorithms frequently rely on heuristics, and there is arguably
no consensus. Eg: Jin & Jaja [[121] use k£ eigenvectors of the Laplacian as feature vectors to
perform k-means clustering of the nodes; Purohit et al. [[185]] aim to minimize the change in
the largest eigenvalue of the adjacency matrix; and Loukas & Vandergheynst [159] focuses
on a “restricted” Laplacian quadratic form.

Although recent work has combined sparsification and coarsening [238]], they used
separate algorithmic primitives, essentially analyzing the serial composition of the above
algorithms. The primary contribution of this work is to provide a unifying probabilistic
framework that allows one to simultaneously sparsify and coarsen a graph while preserving
its global structure by using a single cost function that preserves the Laplacian pseudoinverse
L'

Corollary contributions include: 1) Identifying the limit of infinite edge weight with
edge contraction, highlighting how its algebraic, geometric, and physical interpretations
are reflected in L', which remains finite in this limit (Section ; 2) Offering a way to
quantitatively compare the effects of edge deletion and edge contraction (Section4.4|and 4.5));

3) Providing a probabilistic algorithm that reduces graphs while preserving L', using an
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unbiased procedure that minimizes its variance (Sections and 4.6)); 4) Proposing a more
sensitive measure of spectral similarity of graphs, inspired by the Poincaré half-plane model
of hyperbolic space (Sections and[4.9.3)); and 5) Comparing our algorithm with several
existing sparsification and coarsening algorithms using synthetic and real-world datasets,

demonstrating that it more accurately preserves the large-scale structure (Sections

and [4.9.6).

4.4 Why the Laplacian pseudoinverse

Many computations over graphs involve solving L¥ = b for 7 [221]]. Thus, the algebraically
relevant operator is arguably the Laplacian pseudoinverse L'. In fact, its connection with
random walks has been used to derive useful measures of distances on graphs, such as
the well-known effective resistance [S1], and the recently proposed resistance perturbation
distance [[169]. Moreover, taking the pseudoinverse of L leaves its eigenvectors unchanged,
but inverts the nontrivial eigenvalues. Thus, as the largest eigenpairs of L' are associated
with global structure, preserving its action will preferentially maintain the overall “shape”
of the graph (see Appendix for details). For instance, the Fielder vector [80] (associated
with the “algebraic connectivity” of a graph) will be preferentially preserved. We now
discuss in further detail why L' is well-suited for both graph sparsification and coarsening.

Attention is often restricted to undirected, positively weighted graphs [61]. These graphs
have many convenient properties, eg, their Laplacians are positive semidefinite (Z'LZ > 0)
and have a well-understood kernel and cokernel (L1 = 1'L = (). The edge weights are
defined as a mapping W: £ — R.,. When the weights represent connection strength, it is
generally understood that w, — 0 is equivalent to removing edge e. However, the closure of

the positive reals has a reciprocal limit, namely w, — +00.
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This limit is rarely considered, as many classical notions of graph similarity diverge. This
includes the standard notion of spectral similarity, where G is a o-spectral approximation of
G if it preserves the Laplacian quadratic form Z'L_Z to within a factor of o for all vectors
ze R [213]. Clearly, this limit yields a graph that does not approximate the original
for any choice of ¢: any & with different values for the two nodes joined by the edge with
infinite weight now yields an infinite quadratic form. This suggests considering only vectors
that have the same value for these two nodes, essentially contracting them into a single
“supernode”. Algebraically, this interpretation is reflected in L', which remains finite in
this limit: the pair of rows (and columns) corresponding to the contracted nodes become
identical (see Sectiond.9.2).

Physically, consider the behavior of the heat equation 0,7 + L = 0: as w, — —+00, the
values on the two nodes immediately equilibrate between themselves, and remain tethered
for the rest of the evolutionE] Geometrically, the reciprocal limits of w, — 0 and w, — 400
have dual interpretations: consider a planar graph and its planar dual; edge deletion in one
graph corresponds to contraction in the other, and vice versa. This naturally extends to
nonplanar graphs via their graphical matroids and their duals [[180]].

Finally, while the Laplacian operator is frequently considered in the graph sparsification
and coarsening literature, its pseudoinverse also has many important applications in the
field of machine learning [188], eg: online learning over graphs [104]; similarity prediction
of network data [88]; determining important nodes [227]]; providing a measure of network
robustness to multiple failures [187]; extending principal component analysis to graphs
[197]; and collaborative recommendation systems [184]. Hence, graph reduction algorithms

that preserve L would be useful to the machine learning community.

’In the spirit of another common analogy (edge weights as conductances of a network of resistors),
breaking a resistor is equivalent to deleting that edge, while contraction amounts to completely soldering over
it.
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4.5 Our graph reduction framework

We now describe our framework for constructing probabilistic algorithms that generate a
reduced graph G from an initial graph G, motivated by the following desiderata: 1) Reduce
the number of edges/nodes (Section ; 2) Preserve L' in expectation (Section ;
and 3) Minimize the change in L' (Section .

We first define these goals more formally. Then, in Section {.5.4] we combine these
requirements to define our cost function and derive the optimal probabilistic action (ie,

deletion, contraction, or reweight) to perform to an edge.

4.5.1 Reducing edges and nodes

Depending on the application, it might be more important to reduce the number of nodes
(eg, coarsening a sparse network) or the number of edges (eg, sparsifying a dense network).
Let r be the number of prioritized items reduced during a particular iteration. When those
items are nodes, then » = 0 for a deletion, and r = 1 for a contraction. When those items
are edges, then r = 1 for a deletion, however r > 1 for a contraction is possible: if the
contracted edge forms a triangle in the original graph, then the other two edges will become
parallel in the reduced graph (see Figure d.6]in Section[4.9.2)). With respect to the Laplacian,
this is equivalent to a single edge with weight given by the sum of these now parallel edges.
Thus, when edge reduction is prioritized, a contraction will have » = 1 4 7., where 7, is the
number of triangles in the original graph G in which the contracted edge e participates.
Note that, even when node reduction is prioritized, the number of edges will also
necessarily decrease. Conversely, when edge reduction is prioritized, contraction of an
edge is also possible, thereby reducing the number of nodes as well. For the case of
simultaneously sparsifying and coarsening a graph, we choose to prioritize edge reduction,

although nodes could also be a sensible choice.
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4.5.2 Preserving the Laplacian pseudoinverse
Consider perturbing the weight of a single edge ¢ = (v1,v9) by Aw. The change in the
Laplacian is

L. — L, = Awbb,, 4.1)

where L. and L, are the perturbed and original Laplacians, respectively, and Ee is the

(arbitrarily) signed incidence (column) vector associated with edge e, with entries

+1 ’i:UI
(be); =4 =1 i=u, (4.2)

0 otherwise.

The change in L' is given by the Woodbury matrix identit (232]]:

Aw -
LL-r=——— LI (4.3)
1+ Awb]Lb,

Note that this change can be expressed as a matrix that depends only on the choice of edge

e, multiplied by a scalar term that depends (nonlinearly) on the change to its weight:

Aw
AL = f<w—e, weﬂe> x M., (4.4)
~——— ~—~
nonlinear scalar constant matrix

3This expression is only officially applicable when the initial and final matrices are full-rank; additional
care must be taken when they are not. However, for the case of changing the edge weights of a graph Laplacian,
the original formula remains unchanged [[191} [168]] (so long as the graph remains connected), provided one
uses the definitions in Section @] (see also Sections @ and @
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where

Aw
f= _Hi—eweﬁe’ (4.5)
M, = w L5 L}, (4.6)
Q. =0 Lb,. 4.7)

Hence, if the probabilistic reweight of this edge is chosen such that E[f] = 0, then we have

E[Lg] = L;, as desired. Importantly, f/ remains finite in the following relevant limits:

deletion: au oy 1, f—=(1—w)™
¢ (4.8)
contraction: Aw s 40, f— - (weﬂe)fl.

We

Note that f diverges when considering deletion of an edge with w.(). = 1 (ie, an
edge cut). Indeed, such an action would disconnect the graph and invalidate the use of
equation (4.3) (see footnote [3). However, this possibility is precluded by the requirement

that E[f] = 0.

4.5.3 Minimizing the error

Minimizing the magnitude of AL' requires a choice of matrix norm, which we take to be
the sum of the squares of its entries (ie, the square of the Frobenius norm). Our motivation
is twofold. First, the algebraically convenient fact that the Frobenius norm of a rank one
matrix has a simple form, viz,

me = |M.||p = web, LL LD, (4.9)

e"GgTGge’
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Second, the square of this norm behaves as a variance; to the extent that the M, associated
to different edges can be treated as (entrywise) uncorrelated one can decompose multiple

perturbations as follows:

]E{HZALT

j ”ZE[”NJTH@ (4.10)

which allows the single-edge results from Section [4.5.4] to be iteratively applied to our
reduction algorithm, which has multiple reductions (Section 4.6).

In Figure 4.1 we empirically validate this assumption for networks with a variety of
structures. In fact, the true error is statistically equal to or less than the estimated error. Thus,

the estimated error may be used by StopCriterion in Algorithm
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Figure 4.1: The approximation of uncorrelated changes to L' is nearly exact or a
conservative estimate. We test the validity of equation (4.10) using a variety of datasets:
Top left: a triangular mesh of the text “arXiv” (902 nodes and 2203 edges); Top middle:
an Erd6s—Rényi model (256 nodes and p = 1/16); Top right: a weighted social network
of face-to-face interactions between primary school students, with initial edge weights
proportional to the number of interactions between pairs of students (236 nodes and 5899
edges) from [215]; Bottom left: a transportation network of European cities and roads
between them (1039 nodes and 1305 edges) from [225]; Bottom middle: the C. elegans
posterior nervous system connectome (269 nodes and 2902 edges) from [118]]; and Bottom
right: a collaboration network of Jazz musicians (198 nodes and 2742 edges) from [90].
We applied Algorithm [I] prioritizing edge reduction (allowing for deletion, contraction,
and reweighting), and setting ¢ = 1/16 and d = 1/4. We recorded the estimated error and
the true error in L' as a function of amount of reduction. Shading denotes one standard
deviation about the mean for 32 runs of the algorithm. In general, the estimated error serves
as an approximate upper bound of the true error in L' (although it is nearly exact for graphs
with a geometric quality). The validity of the approximation allows one to use a bound on
the estimated error as a StopCriterion in Algorithmm (Section @)

For subtleties associated with edge contraction (see Section [4.9.5 in particular

equation (4.39)).
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4.5.4 A cost function for spectral graph reduction

Combining the discussed desiderata, we choose to minimize the following cost function:
¢ =E|||ar|] - 5ED], @.11)

subject to

E[AL'] =0, (4.12)

where the parameter 3 controls the tradeoff between number of prioritized items reduced r
and error incurred in L'. This cost function naturally arises when minimizing the expected
squared error for a given expected amount of reduction (or equivalently maximizing the
expected number of reductions for a given expected squared error).

We desire to minimize this cost function over all possible reduced graphs. As, when
reducing multiple edges, E[r| is additive and the expected squared error is empirically
additive, we are able to decompose this objective into a sequence of minimizations applied
to individual edges. Thus, minimization of this cost function for each edge acted upon can
be seen as a probabilistic greedy algorithm for minimizing the cost function for the final
reduced graph.

Here, we describe the analytic solution for the optimal action (ie, probabilistically
choosing to delete, contract, or reweight) to be applied to a single edge. We provide the
solution in Figure4.2] and a detailed derivation in Section[4.9.1]

For a given edge e, the values of m., w.(2., and 7, are fixed, and minimizing the cost
function (given (4.12))) results in a piecewise solution with three regimes, depending
on the value of 5: 1) When 5 < 51 (m,, .S, 7) = min(S14, B1c), B is small compared
with the error that would be incurred by acting on this edge, thus it should not be changed;

2) When ( > Bo(me, w2, Te), B is large for this edge, and the optimal solution is to
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probabilistically delete or contract this edge (p; + p. = 1; no reweight is required); and 3)
In the intermediate case (51 < [ < [32), there are two possibilities, depending on the edge
and the choice of prioritized items: if 814 < (1., the edge is either deleted or reweighted,

and if 1. < P14, the edge is either contracted or reweighted.

B<p1 | pa=0, p.=0, ﬁf =0 prioritizing edges prioritizing nodes
Q
— = ]_ - Me = o
ol R b e N
QN Aw Pd -1
= = =1(1- -1
Vi QH We 1—weQe ﬁlc Me 1 Me
Q we e V1+Te WeS2e
= _ _ _ Me
Voo [Pa=00 pe=1- ol
N Me 1 Me
= \/U Aw _ Pe B2 WeQle(1—weQe) 144/ e WeSle (1—welle)
& we T weQe
ﬂ > ﬂZ Pd = 1-— weQe, Pc = weQe

Figure 4.2: Left: Minimizing C for a single edge e. There are three regimes for the solution,
depending on the value of 5. When node reduction is prioritized, set 7. = 0. Right: Values of
£ dividing the three regimes. Note that when edge reduction is prioritized, the number of
triangles enters the expressions, and when node reduction is prioritized, there is no deletion
in the intermediate regime. However, for either choice, both deletion and contraction can
have finite probability, and the algorithm does not exclusively reduce one or the other. Thus,
when simultaneously sparsifying and coarsening a graph, the prioritized items may be
chosen to be either edges or nodes. We remark that the values of (14, (1., and 3, might
be of independent interest as measures of edge importance for analyzing connections in
real-world networks.

4.5.5 Node-weighted Laplacian

When nodes are merged, one often represents the connectivity of the resulting graph G by a
matrix of smaller size. To properly compare the spectral properties of G with those of the
original graph (&, one must keep track of the number of original nodes that comprise these
“supernodes” and assign them proportional weights. The appropriate reduced Laplacian L,

(of size |V&| x |V&]) is then W, ' B' W, B, where the W are the diagonal matrices of the
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node Weight and the edge weights of G, respectively, and B is its signed incidence matrix
with columns given by (@.2)).

Moreover, one must be careful to choose the appropriate pseudoinverse of L., which is

given by
L -
i= L +T) —J, (4.13)
Lo
J = = W, , (4.14)

where W, € RLV%’ is the vector of node weights. Note that LgLé = LéLg =TI — J, the
appropriate node-weighted projection matrix.

To compare the action of the original and reduced Laplacians on a vector & € ]R|VG| over
the nodes of the original graph, one must “lift” L to operate on the same space as L. We

thus define the mapping from original to coarsened nodes as a |Vz| x |V | matrix C, with

entries

1 node j in supernode ¢
Cy = (4.15)

0 otherwise.

The appropriate lifted Laplacian is L., = C’TLé W, C. Likewise, the lifted Laplacian
pseudoinverse is Lg = CTL}; W, C (see Section for a detailed rationale of these

definitions).

4.6 Our graph reduction algorithm

Using this framework, we now describe our graph reduction algorithm. Similar to many

graph coarsening methods [[103}[195], we obtain the reduced graph by acting on the initial

4 W, is often referred to as the “mass matrix” [140]. We note that the use of the random walk matrix
D' L can be seen as using the node degrees as a surrogate for the node weights.
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graph (as opposed to adding edges to an empty graph, as is frequently done in sparsification
(145 [152]).

Care must be taken, however, as simultaneous deletions/contractions may result in
undesirable behavior. Eg, while any edge that is itself a cut-set will never be deleted (as
w2, = 1), a collection of edges that together make a cut-set might all have finite deletion
probability. Hence, if multiple edges are simultaneously deleted, the graph could become
disconnected. In addition, the single-edge analysis could underestimate the change in L'
associated with simultaneous contractions. Eg, consider two highly-connected nodes that
are each the center of a different community, and a third auxiliary node that happens to
be connected to both: contracting the auxiliary node into either of the other two would be
sensible, but performing both contractions would merge the two communities.

Algorithm [T] describes our graph reduction scheme. Its inputs are: (5, the original graph;
q, the fraction of sampled edges to act upon per iteration; d, the minimum expected decrease
in prioritized items per edge acted upon; and StopCriterion, a user-defined function.
With these inputs, we implicitly select 3. Let 3, be the minimum /5 such that E[r] > d for
edge e. For each iteration, we compute 3, for all sampled edges, and choose a /3 such that
a fraction ¢ of them have 3, < 3. We then apply the corresponding probabilistic actions to
these edges. The appropriate choice of StopCriterion depends on the application. Eg,
if one desires to bound the accuracy of an algorithm that uses graph reduction as a primitive,
limiting the Frobenius error in L' is a sensible choice (it is trivial to keep a running total
of the estimated error, see Sectiond.5.3). On the other hand, if one would like the reduced
graph to be no larger than a certain size, then one can simply continue reducing until this
point. While both criteria may also be implicitly implemented via an upper bound on f3, the
relationship is nontrivial and depends on the structure of the graph.

The aforementioned problems associated with simultaneous deletions/contractions can

be eliminated by taking a conservative approach: acting on only a single edge per iteration.
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Algorithm 1 ReduceGraph

1: Inputs: graph G, fraction of sampled edges to act upon ¢,
minimum E[r| per edge acted upon d, and a StopCriterion
Initialize GO +— G, t <+ 0, stop < False
while not (stop) do
Sample an independent edge set
for (edge e) in (sampled edges) do
Compute €., m. (see equations and @.9))
Evaluate (,., according to d (see Tables in Figure
end for
Choose [ such that a fraction ¢ of the sampled edges
(those with the lowest f3,.) are acted upon
10:  Probabilistically choose to reweight, delete, or contract these edges
11:  Perform reweights and deletions to G,
12:  Perform contractions to G,
130 G+ Gy, t—t+1
14:  stop < StopCriterion(Gy)
15: end while
16: return reduced graph G,

A A

However, this results in an algorithm that does not scale favorably for large graphs. A
more scalable solution involves carefully sampling the candidate set of edges. In particular,
we are able to significantly ameliorate these issues by sampling the candidate edges such
that they do not have any nodes in common (ie, the sampled edges form an independent
edge set). Not only does this eliminate the possibility of “accidental” contractions, but,
empirically, it also suppresses the occurrence of graph disconnections (the small fraction
that become disconnected are restarted). At each iteration, our algorithm finds a random
maximal independent edge set in O(|V/|) time using a simple greedy algorithmﬂ In practice,
the size of such a set scales as O(|V]) (although it is easy to find families for which this
scaling does not hold, eg, star graphs). Our algorithm then computes the 2. and m, of these

sampled edges, and acts on the fraction ¢ with the lowest 5,..

3Specifically, randomly permute the nodes, and sequentially pair them with a random available neighbor
(if there is one). The obtained set contains at least half as many edges as the maximum matching [[10]].
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The main computational bottleneck of our algorithm is computing €2, and m,
(equation (4.9))). However, we can draw on the work of [212], which describes a method for
efficiently computing e-approximate values of €. for all edges, requiring O(| E|log |V|/€?)
time. With minimal changes, this procedure can also be used to compute approximate
values of m. with similar efficiency (in Section 4.9.5] we discuss the details of how to
efficiently compute approximations of m.). As we must compute these quantities for each
iteration, we multiply the running time by the expected number of iterations, O(|E|/qd|V]).
Empirically, we find that one is able to set ¢ ~ 1/16 and d ~ 1/4 with minimal loss in
reduction quality (see Section [4.9.4). Thus, we expect that our algorithm could have a
running time of O((k)|E|), where (k) is the average degree. However, in the following
results, we have used a naive implementation: computing L' at the onset, and updating it

using the Woodbury matrix identity.

4.7 Experimental results

In this section, we empirically validate our framework and compare it with existing
algorithms. We consider two cases of our general framework, namely graph sparsification
(excluding regimes involving edge contraction), and graph coarsening (prioritizing reduction
of nodes). In addition, as graph reduction is often used in graph visualization, we generated
videos of our algorithm simultaneously sparsifying and coarsening several real-world

datasets (see footnote [I|and Appendix [B.2).

4.7.1 Hyperbolic interlude

When comparing a graph G with its reduced approximation G, it is natural to consider
how relevant linear operators treat the same input vector. If the vector L 7 is aligned with

L 7, the fractional error in the quadratic form F'LZ is a natural quantity to consider, as it
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corresponds to the relative change in the magnitude of these vectors. However, it is not so
clear how to compare output vectors that have an angular difference. Here, we describe a
natural extension of this notion of fractional error, which draws intuition from the Poincaré
half-plane model of hyperbolic geometry. In particular, we choose the boundary of the
half-plane to be perpendicular to 7 and compute the geodesic distance between L 7 and

Lé T, Viz,

" (2o — 2075 |17
dz(Lg, L) = arccosh (1 + 2(:?105) (frl—qf) , (4.16)
where Ly and L, are positive definite matrices (for now).

We define the hyperbolic distance between these matrices as
dn(Ly, L) = sup dz(Lo, Ly) . (4.17)

This dimensionless quantity inherits the following standard desirable features of a distance:
symmetry and non-negativity, dy(Lg, L) = dy(Ly, Ly) > 0; identity of indiscernibles,
dn(Lg, L1) = 0 <= Ly = Ly; and subadditivity, dj (Lo, Ly) < dn(Lo, L1) + dn(Ly, Ls).
In addition, we note that d(cLg,cL,) = dy(Lg, L) Yc € R\{0}, emphasizing its
interpretation as a fractional error.

This notion naturally extends to (positive semidefinite) graph Laplacians if one considers
only vectors ¥ that are orthogonal to their kernels (ie, require that 1'% = 0 when taking
the supremum in (4.17))). With this modification, the connection with the spectral graph

sparsification can be stated as follows:

Theorem If dy, (LG, Lé) < In(0), then G is a o-spectral approximation of G.
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Here, the notion of o-spectral approximation is the same as in Spielman & Teng [213]
(see Section {.4)), and thus is restricted to sparsification only. The proof is provided in
Section[4.9.3]

As dz is analogous to the ratio of quadratic forms with 7, dj, is likewise analogous to
the notion of a o-spectral approximation. Moreover, as dz and dj, also consider angular
differences between L7 and Ly 7, they serve as more sensitive measures of graph similarity.

In the following sections, we compare our algorithm with other graph reduction methods
using dz, where we choose 7 to be eigenvectors of the original graph Laplacian. In
Section[4.9.6] we replicate our results using more standard measures (eg, quadratic forms

and eigenvalues).

4.7.2 Comparison with spectral graph sparsification

Figure .3|compares our algorithm (prioritizing edge reduction, and excluding the possibility
of contraction) with the standard spectral sparsification algorithm of Spielman & Srivastava
[212] using three real-world datasets. We choose to compare with this particular
sparsification method because it directly aims to optimally preserve the Laplacian.
To the best of our knowledge, other sparsification methods either do not explicitly
preserve properties associated with the Laplacian [202, 4], or share the same spirit as
Spielman & Srivastava’s algorithm [86] (often considering other settings, such as distributed
[143]] or streaming [127] computation). The results in Figure 4.3|show that our algorithm
better preserves L' and preferentially preserves its action on eigenvectors associated with

global structure.
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Figure 4.3: Our sparsification algorithm preferentially preserves global structure.
We applied our algorithm without contraction (Ours) and compare with that of
Spielman & Srivastava [212] (Spielman et al) using three datasets: Left: a collaboration
network of Jazz musicians (198 nodes and 2742 edges) from [90]]; Middle: the C. elegans
posterior nervous system connectome (269 nodes and 2902 edges) from [118]]; and Right: a
weighted social network of face-to-face interactions between primary school students, with
initial edge weights proportional to the number of interactions between pairs of students
(236 nodes and 5899 edges) from [215]. For the two algorithms, we compute the hyperbolic
distance dz (fractional error) between Lg;f and Lgf at different levels of sparsification
for two choices of z: the smallest non-trivial eigenvector of the original Laplacian (dark
shading), which is associated with global structure; and the median eigenvector (light
shading). Shading denotes one standard deviation about the mean for 16 runs of the
algorithms. The curves end at the minimum edge density for which the sparsified graph is
connected.

4.7.3 Comparison with graph coarsening algorithms

Figure 4.4 compares our algorithm (prioritizing node reduction) with several existing
coarsening algorithms using three more real-world datasets. In order to make a fair
comparison with these existing methods, after contracting their prescribed groups of nodes,
we appropriately lift the resulting reduced Lg (see Section . We find that our algorithm

more accurately preserves global structure.
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Figure 4.4: Our algorithm preserves global structure more accurately than other
coarsening algorithms. We compare our algorithm (prioritizing node reduction) (Ours)
to several existing coarsening algorithms: two classical methods for graph coarsening
(heavy-edge matching (HEM) [[130] and heavy-clique matching (HCM) [130]]), and two
recently proposed spectral coarsening algorithms (local variation by Loukas [[158] (I.V) and
the k-means method by Jin & Jaja [121] ( )). We ran the comparisons using three
datasets: Left: a transportation network of European cities and roads between them (1039
nodes and 1305 edges) from [2235]]; Middle: a triangular mesh of the text “arXiv”’ (902 nodes
and 2203 edges); and Right: a weighted social network of face-to-face interactions during
an exhibition on infectious diseases, with initial edge weights proportional to the number
of interactions between pairs of people (410 nodes and 2765 edges) from [[116]. For all
algorithms considered, we compute the hyperbolic distance dz (fractional error) between
Lgf and L; &, where 7 is the smallest non-trivial eigenvector of the original Laplacian
(associated with global structure). To provide a baseline, we plot their mean fractional
error normalized by that obtained by random matching (RM) [[130] for the same level of
coarsening. Shading denotes one standard deviation about the mean for 16 runs of the
algorithms.

4.8 Conclusion

In this work, we unify spectral graph sparsification and coarsening through the use of a single
cost function that preserves the Laplacian pseudoinverse L. We describe a probabilistic
algorithm for graph reduction that employs edge deletion, contraction, and reweighting to
keep E [Lg] = Lg, and uses a new measure of edge importance ((3,) to minimize its variance.
Using synthetic and real-world datasets, we demonstrate that our algorithm more accurately

preserves global structure compared to existing algorithms. We hope that our framework (or

98



some perturbation of it) will serve as a useful tool for graph algorithms, numerical linear

algebra, and machine learning.

4.9 Derivations and Methods

4.9.1 Derivation of the optimal probabilistic action

to an edge

As discussed in Section4.5.4] we seek to minimize:

¢ =E[||ar|] - 5ED]. (4.18)

subject to
(4.19)

E[AL'] = 0.
When reducing multiple edges, E[r] is additive and E[HAL*HE} is approximately

additive (see Section 4.5.3). Thus, we partition this minimization into a sequence of

subproblems, treating each perturbation to an edge individually.

Recall that

Aw
AL — <%,weﬂe> % M,  where — o we
/ e / 1+ 22,0,

~~~ We

nonlinear scalar constant matrix

We now derive the optimal probability of deleting (p4), contracting (p.), or reweighting

(1 — pg — pe) a given edge e, along with the change to its weight (Aw) in the case of the

latter.
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The constraint (4.19)) requires that this reweight satisfies

Pa Pe o
1—w.,  w. + (1 Pa pc)E[f]rewelght] =0, (4.20)

where we have used the following limits:

deletion: oy 1, f—=(1—we)™"
. 4.21)
contraction: 22 — 400, f = — (w.Q) .

We

Likewise, the cost function (4.18]) for acting on the edge ¢ becomes:

p Pe _
C= ((1 _;Q E + (0.0,)° + (1 = pa —PC)IE[f2|rewe1ght}) m2 — 5% (rapa + repe),

(4.22)

where r; and 7. are the number of prioritized items that would be removed by a deletion or

contraction, respectively.

For a fixed p, and p., E[ f|reweight] is fixed by equation (#.20). As aaAZZ > (0 everywhere,
the inequality E[f2|reweight] > E[f|reweight]” becomes an equality under minimization

of @.22).
Thus, if an edge is to be reweighted, it will be changed by the unique Aw satisfying

Dw

— (1 — — De — W @ O 423
( Pa — P )1 + ﬁ_z:weQe ( )

DPd . De
1—w e w2,

Clearly, the space of allowed solutions lies within the simplex S: 0 < pg, 0 < pe, pag + pe < 1.

A <~ further implies that p, < w. 2. and pg < 1 — w, 2.

We —

The additional constraint —1 <

Hence, we substitute (4.23)) into (4.22)), and minimize it over this domain (given me, w2,

100



T., and (3). After some careful elementary calculus, we obtain the solution provided in

Figure 4.2

4.9.2 Lifting the matrices of a contracted graph

Here, we provide a detailed rationale for the definitions given in Section4.5.5 namely, the
choice of L_ and L', and how to “lift” these matrices to the original dimension |V| x |VZ|
when edges have been contracted.

Recall the following definitions:

L.= W, 'B"W.B, (4.24)
L= (L, +J) " -J, (4.25)
L,=CLWw'C, (4.26)
LL,=crwc, (4.27)
where
J L 1 (4.28)
== w,, , .
1",

1 node j in supernode 7
C={¢}= (4.29)
0 otherwise.
The above definitions ensure that the lifted Lg, , of the contracted graph is identical to the
w, — oo limit of the original L.
To illustrate the consistency of these definitions, we consider a concrete example: the

line graph with 3 edges, where the center edge is to be contracted (Figure 4.5)). Let the

center edge have weight w. > 1, while the other two have a fixed weight of 1.
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We — OO

Figure 4.5: Contracting the center edge of a line graph. Left: Original graph G with large weight
w, on the center edge. Right: Reduced graph G obtained by contracting this edge (w, — o). Note
that the weight of the contracted nodes sum to give the weight of the resulting supernode in the
reduced graph.

For the original graph G, the Laplacian and its pseudoinverse are

1 ~1 0 0 S+l —1-2 3-2
-1 14w, -w. O 1| -1+2 142 1-2 -1-2
L = , LT:_ e e e e
< ¢ 8 2 2 2 2
0 —we 14w, —1 —1l- 1- 1+ -1+
-0 0 -1 1 -3-2 —1-% —1+2 542
For the contracted graph G, we have
11 1
1 00 15 1 1000
_ — |1 1 1 -
Wo=1(02o0f J=|; 3 3] €=[0110
11 1
0 01 15 1 0001
Thus, the reduced Laplacian and its pseudoinverse are
1 -1 0 5 -2 =3
1
— 1 1 T =
L=(-1 1 -1, L@—g -1 2 -1
0o -1 1 -3 -2 5
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When lifted to the original dimensions |V| x |V|, these become

1 1

1 -1 -1 5 -1 -1 -3
1 1 1 1
R R R e B -1 1 1 -1
G 11 1 1|’ G g 11 1 1
T2 2 2 T2 - -

1 1

0 -1 -1 1 ~3 -1 -1 5

Note that the lifted Lg’, is equal to the w, — oo limit of the original LCT;, as desired. In
contrast, the original L, diverges, while the lifted L averages the rows and columns of the
merged nodes. Moreover, regardless of whether node weights are included in the definitions,
using the standard Moore—Penrose pseudoinverse of the reduced Laplacian will yield a lifted
pseudoinverse that is not equivalent to the original in the w, — oo limit.

Additionally, we remark that, while contraction always requires the summing of node
weights, it can also lead to the summing of edge weights (when the contracted edge

participates in any triangle in the original graph, see Figure {.6).

Figure 4.6: Contracting an edge that participates in triangles. Left: Original graph G
containing an edge with large weight w, that participates in two triangles. Right: Reduced
graph G obtained by contracting this edge (w., — 00). Note that the two non-contracted
edges in each triangle form a single edge in the reduced graph with weight equal to their
sum.
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4.9.3 Proof of the relationship between

the hyperbolic distance and o-spectral approximation

In this section, we prove Theorem [} from Section
Theorem 1. Ifd), (LG, Lé) < In(0), then G is a o-spectral approximation of G.

Proof. Let G be the original graph and  its sparse approximation (no contraction/removing
of nodes). Recall the relevant definitions:

G is a o-spectral approximation of G [213] if
FL 7 < L7 <ofL 7 VieRY (4.30)

We propose to instead measure the hyperbolic distance between the resulting L7 and

L7, namely

L. - L)7|; |7/
dn (L, L) défsup{arccosh(l—i— ”( < G>xH2HxH2>}, 4.31)

" 2(7T,7) (TL.7)

where L, and L are the Laplacians of GG and G, respectively, and 7 is perpendicular to their
kernels.
Consider the result of a Laplacian acting on such a vector Z, and decompose the output

as a component parallel to # with magnitude /| and a component v 1 perpendicular to Z:

— —

~ I - ~ I >
L7=0——+1, L.i=0——+¢,. (4.32)
< i, TN
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Hence,

(B, — LT3 = () =) + ][00 2 |f5, (4.33)

TLE = |2l,,  TLT=f |, (4.34)
Let z = ZH /. Substituting (@#.34) into (@.30), we see that G is a o-spectral

a4l _ !
max , = ¢ = max\ z, <o. (4.35)
€H / z

Now, substituting #.33]into (4.16)), we obtain:

approximation of G if

(6 =202 + 12 =203
20, 170141 1171,

df(L L~) = arccosh |1+

G? G

B =200+ 03
20,4

1 1
> arccosh(— <z + —)) )
2 z

Using the identity arccosh(z) = In (a: + Va2 — 1) ,

ds(L,, L) >ln(%(z—l—§) +\/%(z+é)21)

> 1 1 +1 +1
nl=(z-+ - —
- 2 z 2

> |In(2)|.

> arccosh <1 +

G’ G

Thus, if d,g(L L~) <In(o) VZ LT, then G is a o-spectral approximation of G, as
desired. O
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4.9.4 Number of edges acted upon per iteration can be O(|V|)

In this section, we study the effect of varying the parameter ¢, the fraction of sampled edges
acted upon, using real-world datasets from different domains (Figure [4.7).

For each iteration of our algorithm, we sample a random independent edge set and act
on the fraction ¢ with the lowest j,. (see Section d.6). We find that the resulting error
asymptotes around g ~ 1/16. We expect that by combining this sampling method with
existing algorithmic primitives (eg, [212], see Section4.9.5), our algorithm could achieve a

running time of O((k)|E|), where (k) is the average degree (see Section . This would

allow it to be used in large-scale applications of graph reduction.
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Figure 4.7: Number of sampled edges acted upon per iteration can be O(|V|). We study
the effect of varying ¢, the fraction of the sampled edges that are acted upon per iteration,
using three datasets: Left: a transportation network of European cities and roads between
them (1039 nodes and 1305 edges) from [225]; Middle: the C. elegans posterior nervous
system connectome (269 nodes and 2902 edges) from [[118]; and Right: a weighted social
network of face-to-face interactions during an exhibition on infectious diseases, with initial
edge weights proportional to the number of interactions between pairs of people (410 nodes
and 2765 edges) from [116]]. We prioritize edge reduction (allowing for deletion, contraction,
and reweighting). At each iteration, the algorithm randomly samples a maximal independent
edge set, and chooses [ such that a fraction ¢ of these edges (with the lowest (,.) are acted
upon. For each run, we compute the hyperbolic distance dz (fractional error) between Lgf
and Lglzf, where 7 is one of three eigenvectors of the original Laplacian. Top plots display
the results when the graph has 1/2 of its original number of edges, and botfom plots when it
has 1/12. Shading denotes one standard deviation about the mean for 8 runs of the algorithm
for a given value of ¢. Note that a significant fraction (¢ ~ 1/16) of the sampled edges can
be reduced each iteration without sacrificing much in terms of accuracy. As, empirically, the
size of the independent edge sets are typically O(|V]), the number of edges acted upon per
iteration can likewise be O(|V|).

107



4.9.5 Efficiently computing m,

As discussed in Section[4.6], the main computational bottleneck of our algorithm is computing
), and m,.. For ()., we can draw on the work of [212], which describes a method for
efficiently computing -approximate values of €2, for all edges, requiring O(|E|log |V |/€?)
time. In this section, we describe an analogous procedure to efficiently compute the ..

Recall that the reduced Laplacian is:

Lé - v‘/n_lBTufeBa

def

hence, the quantity 1}; < W, L, W, " is clearly symmetric.

Less obvious is the fact that L}; = ml/QLg W;L_l/Q is also symmetric. This can be

seen by noting that ml/ °J VVn’l/ ® is symmetric, and using the definition of the inverse

(equation (4.25)):

Il = WLiw

1

=W (L) =) W

= W (L 0) W W W

= (W B W WRI W) - W W
We also remark that i}z is indeed the pseudoinverse of i};:
The change to the reduced Laplacian L is given by
AL, = W, 'b, b,
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Thus, by the Woodbury matrix identity, the change to its inverse is
P t -l T
AL, = fw, LW, bb, L}

where f is given by equation (4.3).

Lifting this change back to the original dimension via equation gives
ALl = fu. CTLLW, B0 LW, C

In particular, as Lg w

n_l 1S symmetric, AL}; , 1s also symmetric, thus we can write the

Frobenius norm as

ALl = fwb LLW 'CC'L. W, 'b, (4.36)
Gl F G G

= fm, (4.37)

Note that the definition of m, provided in Section4.5.3] (equation (4.9))) applies to the

case of unit node weights, and the general expression is given by
m, = web, LLLL W'D, (4.38)

where we have used CC" = W,.

Thus, we can express m, in terms of Lg:

me = wel;: W:Wig@ W;VZB;
)

LW,

:’u}e
2
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We can now use the Johnson—Lindenstrauss lemma to build a structure from which one
can efficiently compute approximations of m,. Let @ be a random projection matrix of size
k x n, where k = O(logn/e?), then one can compute -approximations of m,, as follows:
2

QL. W, %,
2

m, ~ We

Let Z = Qf}g, and denote the i™ rows of @ and Z by ¢; and Z, respectively. Then,
one can make k calls to an efficient algebraic multigrid solver (we used the pyamg package
[24]) to obtain approximate solutions to 1}\521 = ¢ for the k rows of Z. An approximation
to the m,, of any edge can now be computed by taking the difference between the columns
of Z VVn_l/ * corresponding to the two nodes jointed by this edge, and taking the squared

2-norm of the result.

Constructing the projection matrix

Care must be taken in constructing the projection matrix Q. In particular, its rows must be
orthogonal to the null space of i};, namely IU:{Q. In addition, the columns must be nearly
unit length. To this end, we initialize Q as a random matrix with entries {1/vk, —1/vVk}

with equal probability and iterate the following steps:

1. For each column, scale its values such that it has unit length

2. For each row, subtract its weighted mean (j’;@ﬁ;{? / 1)

We iterate this procedure until the columns have nearly unit lengths, to within a factor
sufficiently smaller than ¢.
As a proof of concept, in Figure 4.8 we show the approximate m,, as a function of their

exact values.
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Figure 4.8: Efficient approximation of m_,. As a proof of concept, we compare the
approximation of m_ (computed using the procedure described in this section) with their
exact values. Here, we consider a 64 x 64 torus graph (4096 nodes and 8192 edges), where
the edge weights are randomly distributed as exp(U(—2, 2)), where U(a, b) is the uniform
distribution. To calculate the approximate m,, we project from 4096 to 33 dimensions,
resulting in approximations that are typically within a factor of 1.27 of the exact value.

4.9.6 Comparison of graph reduction methods

using typical similarity measures

Our proposed hyperbolic distance is not usually used as a measure of similarity. Hence, in
this section, we show that other more commonly used measures yield similar results when

comparing graph reduction algorithms.

Sparsification

Figure .9/ compares our algorithm (prioritizing edge reduction, and excluding the possibility
of contraction) with the spectral sparsification algorithm of [212] using a stochastic block
model (SBM) with four distinct communities. We choose a highly associative SBM due

to the clear separation between the eigenvectors associated with global structure (ie, the
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communities) and the bulk of the spectrum. Note that these algorithms have different

objectives (preserving L' and L, respectively), and both accomplish their desired goal.

local details
15 5
+— 10 (Y]
Ty | localdets i st
global structure ~_Spielman et al.

1072

global structure

Spielman et al.
__Ours

2000

1000 _
Edges remaining

10°

2000

1000

Edges remaining

Figure 4.9: Our sparsification algorithm preferentially preserves global structure. We
compare our algorithm without contraction (in red) with that of Spielman & Srivastava [212]
(in blue) using a symmetric stochastic block model (256 nodes, 4 communities, and intra-
and inter-community connection probabilities of 272 and 279, respectively). We ran both
algorithms 16 times on the same initial graph. For each eigenvector of the original Laplacian,
we compute the mean and standard deviation of its quadratic forms (with L. and with Lé) as
a function of edges remaining. We divide the eigenvectors into two groups: the 3 nontrivial
eigenvectors (“global structure”) and the remaining eigenvectors (“local details”), and
compute the average mean and average standard deviation for each group. Shading denotes
one (average) standard deviation about the (average) mean. Left: Laplacian pseudoinverse
quadratic form. Right: Standard Laplacian quadratic form. Note that the upward bias of the
“reciprocal” quadratic form is expected for both algorithms (as E[X| < 1/E[1/X] for any
random variable X > 0).

Coarsening

Figure {.10] replicates the results of Figure 4.4 but uses the Laplacian pseudoinverse
quadratic form to measure the reduction quality instead of our proposed hyperbolic distance.

Figure .11| compares our method with that of Loukas [158], using the average relative

k+1
1=2

error of the k& lowest non-trivial eigenvalues of the Laplacian (ie, % > ‘Xz -\ | / ;) to

measure the reduction quality.

112



E EuroRoad “arXiv” Infectious
10 10 10
=
el
3 RM RM RM
3 1 1 — 1
3 i How S —
< |
£ o 0.1 0.1
=}
=
- 001 0.01 Ours 0.01
S Ours ours
FE 0.001 0.001 0.001
1 |t
&
= 10 05 00 10 05 00 10 05 0.0
Fraction of nodes remaining |V |/|V,| Fraction of nodes remaining |V |/|V| Fraction of nodes remaining |V |/|V,|

Figure 4.10: Our coarsening algorithm performs even better when using the quadratic
form with L'. Here we replicate the experiments in Figure However, instead of using
our proposed hyperbolic distance, we consider the logarithm of the fractional change in
the Laplacian pseudoinverse quadratic form for & the lowest non-trivial eigenvector of the
original Laplacian: ‘1og (fTLgf / fTLgf) ‘ . As before, for each algorithm, we plot the mean of
this quantity normalized by that obtained by random matching (RM). Shading denotes one
standard deviation about the mean for 16 runs of the algorithms. The results are remarkably
similar to those obtained using our proposed hyperbolic distance (Figure 4.4). The most
notable deviation is that our algorithm appears to perform better when compared using this
quadratic form.
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Figure 4.11: Our algorithm preferentially preserves the lower portion of the Laplacian
spectrum. We compare our coarsening algorithm (Ours) with that of Loukas [158]]
(V) using the same three datasets as in Figure We use the relative error in the £
lowest non-trivial eigenvalues of the Laplacian: % > ;21 ‘)\i -\ ’ / A\, a measure of spectral
similarity considered in [158]. Shading denotes one standard deviation about the mean for 8
runs of the algorithms. Note that our algorithm performs considerably better when applied
to graphs with a geometric quality.
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Chapter 5

The Structure of Human Priors

over Navigation and Social Tasks

The nice thing about having a brain is that one can learn,
that ignorance can be supplanted by knowledge,

and that small bits of knowledge can gradually pile up into substantial heaps.

—— Douglas R. Hofstadter,

Le Ton beau de Marot: In Praise of the Music of Language

5.1 Preamble

In this chapter, we quantify human priors over the structure of social and navigation tasks,
using the aforementioned methods and theory.

In brief (see Sections [5.4] and [5.5] for a detailed description of the methods), we ran
experiments in MTurk using our online platform that allows participants to draw the graphs
(see here| for a demonstration video). The basic structure of the experiment is as described in
Chapter 2] Figure[2.3} the participant observes pairs of relations (“partial graphs”) and has

to infer the obscured relations. There were four cover stories in total, two in each domain.
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https://www.youtube.com/watch?v=aZNeN293MZs&t=1s

For the social domain, the participants had to infer friendships (edges) between pairs of
students (nodes) in a classroom, or infer friendships (edges) between pairs of coworkers
(nodes) in a workplace. For the navigation domain, the participants had to infer borders
(edges) separating pairs of neighborhoods (nodes) in a city, or infer trails (edges) connecting
pairs of nature sites (nodes) in a nature park.

We then recover participants’ priors by fitting the Bayesian MCMCP model to their data
(as in Chapter [2]), parametrizing the prior using our hierarchy of distributions over graphs

(Chapter [3)).

5.2 Main findings

5.2.1 Priors favor sparsity

At lowest order (see Chapter[3), we find that participants tend to favor sparsity as the number
of nodes n increases (see Figure [5.1). However, the average number of connections per
node appears to be a slowly increasing function of n, and is remarkably consistent across all
conditions.

This leads to some interesting questions. From the perspective of human cognition, it is
well-known that there is a limited amount of information (~2° bits [126])) that can be held
in working memory [11} 165, 164]. This suggests a constraint of bounded degree in human
priors over graphs, in accord with our results for a small numbers of nodes. Moreover, the
average degree of a planar graph is necessarily less than 6 [5]. And while place and grid cells
appear to be adapted to such planar configurations [29], they have also been shown to encode
structure in non-spatial domains [214}76]]. Could such a (planar) graphical constraint exist

in the hippocampus due to inherent Euclidean proclivities? Regardless, one might posit a
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regime change, where the modality of reasoning about graphical structure switches when

the number of potential relations exceeds some relevant constraints.
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Figure 5.1: Priors favor sparsity. Displayed is the average fraction of connections as a
function of number of nodes for the fitted priors (using our hierarchical parameterization)
for each of the four cover stories: neighborhoods in a city (in blue), trails in a nature park
(in green), friendships in a classroom (in pink), and friendships in a workplace (in purple).
Solid curves denote the average edge density of the priors fitted to the participants’ data. To
compute the error, we simulated ideal Bayesian MCMCP agents responding to the same
data (ie, the partial graphs) seen by the participants, using as a prior that which was fitted
to the participants’ data. We then fit these simulated data using the same model to obtain
a simulated prior. Shading denotes one standard deviation about the average edge density
of these simulated priors for 32 repetitions of this process. The dominant trend is that the
edge density decreases as a function of the number of nodes. Nevertheless, the number of
connections per node appears to be a slowly increasing function of the size of the graph.
This trend is remarkably similar across different conditions, and could be a general feature
of humans’ priors over connections.

5.2.2 Priors are more adaptive than iid connections

To further investigate this trend over the number of connections, we now analyze in detail
the structure of priors over the number of edges only, without considering their relative
positions (ie, neglecting the graphical structure). In Figure [5.2] we display the second and

third scaled cumulants of these priors as a function of the number of nodes. Even though
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participants have a preference for sparsity, their priors are “adaptive”, in the sense that if they
indeed observe many connections, they are able to reflect this in their response. In contrast,
an agent that treats the connections as completely independent would (by definition) not
take this information into consideration in their response (and these scaled cumulants would

be zero, as opposed to the consistently positive values observed).
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Figure 5.2: Priors are more adaptive than simply considering iid connections. Here, we
consider priors that are only sensitive to the number of edges in the graph, thereby removing
all graphical structure. For each cover story and each number of nodes, we fit the data to the
Bayesian MCMCP model with a sixth-order prior over the space of number of edges (see
Section [5.5] for details). Displayed are the first moment, along with the appropriately scaled
higher-order cumulants. These are the factorial cumulants (the appropriate choice for a
distribution over a set of positive integers), and have the same interpretation as the classical
cumulants [74]. Namely, the second-order scaled cumulant quantifies the relative spread in
the distribution, giving zero if the distribution is Binomial. Likewise, the third-order scaled
cumulant quantifies the analogue of skew, or asymmetry, again giving zero if the distribution
is Binomial. In particular, the fact that the second-order scaled cumulant is consistently
positive suggests that the priors are, in a sense, more “adaptive”, in that they more easily
encompass graphs with different edge densities.

5.2.3 A regime change in the preferred density of connections

In Figure [5.3] we display these priors distributions over edge density. There appears to
be a transition between priors that are unimodal in the number of edges to a symmetric
bimodal mixture of sparse and dense distributions. In particular, this suggests that the prior
may consistent of essentially two populations. This hypothesis could be tested by fitting a

hierarchical Bayesian model consisting of a mixture of multiple populations.
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Figure 5.3: The appearance of bimodality in priors over edge density. We use the same

methodology as in Figure[5.2] and display here the resulting distribution over edge density.

For lower numbers of nodes (<5), all cover stories appear to coalesce to a single distribution
over edges with an edge density near !/2. As the number of nodes increases (~5-8), the priors
seem to favor sparsity. Once such a sparse distribution and its complement are sufficiently
well-separated in edge density, two nearly symmetric “populations” emerge.

5.2.4 Priors favor more “egalitarian’ configurations

We now investigate the sensitivity of the prior to graphical substructures (see Chapter [3).
Considering the second-order cumulants (Figure [5.4)), we find that the scaled cumulant
associated with two edges that do not share any node is consistently higher than the scaled
cumulant associated with the wedge (ie, 2-star). This effect is particularly noticeable for
graphs with fewer nodes, and indicates a preference for graphs with degree distributions that
are more uniform (“egalitarian”), as opposed to having hierarchical/scale-free properties
(“the rich get richer”). However, this difference decreases as the number of nodes increases,
suggestively appearing to switch at around eight nodes, in accord with the hypothesis of a

qualitative change in the way people represent graphs of different sizes.
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For the social domain, this could be interpreted as a belief that people in smaller groups
tend to have similar numbers of friends. This is in sharp contrast with the scale-free
properties frequently observed in large social networks (eg, facebook, twitter). A cute
hypothesis is that this disparity between peoples’ priors over small social networks and the
properties of large online social networks might explain the somewhat common feeling
of social isolation/inadequacy despite such a connected world (although the increase in
the preference for wedges with increasing network size suggests the possibility that such

structures are indeed reflected in our priors over larger social networks).
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Figure 5.4: Priors favor more ‘“‘egalitarian’ configurations, specially for small number
of nodes. The methodology to recover the priors and obtain the error bars is the same as in
Figure Solid curves correspond to the second-order scaled cumulant associated with
two edges that share a node (forming a wedge), which measures the preference for graphs in
which a small number of nodes participate in many connections (while many nodes have
only a few connections). Dashed curves correspond to the second-order scaled cumulant
associated with two edges that do not share any node, which measures the preference for
graphs in which nodes have similar numbers of connections. The fact that the scaled wedge
cumulant is consistently lower indicates that people’s priors favor distributing connections
more uniformly than would be expected from random placement. While this trend holds for
small graphs, the trend suggests that there might be a reversal for larger graphs.

5.2.5 Priors over social interactions favor triangles

At third order, we find a striking preference for triangles in the social domain (as measured

by the scaled triangle cumulant), as compared to the navigation domain (Figure[5.5). This is
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in accord with the well-known fact that social networks tend to exhibit triadic closure [229]

(ie, one’s friends tend to be friends with each other).
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Figure 5.5: Priors over social interactions favor triangles. The methodology to recover
the priors and obtain the error bars is the same as in Figure[5.1] The vertical axis corresponds
to the scaled triangle cumulant (a more principled measure of triadic closure than the
traditionally used clustering coefficient, see Figure[3.4]in Chapter [3). The scaled triangle
cumulant for the cover stories in the social domain are clearly above those in the navigation
domain. Thus, the social priors appear to reflect the well-known fact that social networks
tend to exhibit triadic closure [229].

5.2.6 Priors have non-trivial domain-dependent graphical structure

In Figure[5.6, we study the generalization of the prior within and between domains, finding
that priors more accurately describe other cover stories within the same domain than between
domains.

We remark that if the diagonal were less than one, this would indicate that we do not
have enough data, as the quadrupling of data is more important than the specialization to
that particular cover story. In fact, it was quite vindicating to see the diagonal values rise as

Wwe ran more experiments.
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Figure 5.6: Priors have non-trivial domain-dependent graphical structure. For each of
the 4x4 squares, we randomly partitioned the data from each cover story into a training
set (80%) and a test set (20%). We fit a model (on the specified number of nodes and
model order) to the training data from the cover stories listed in the row, and measured the
log-likelihood of the test data in the column, given this model. We normalized this quantity
by the log-likelihood of the column test data given a “non-specialized model” (a Bayesian
MCMCP model fit to the aggregated training data over all cover stories), reporting the mean
of 50 repetitions of this procedure. Hence, when a cell entry equals 1, the corresponding
specialized model (from the row cover story) explains the corresponding data (from the
column cover story) equally as well as the non-specialized model; when it is larger than 1,
the specialized model explains the data better than the non-specialized model; and when it
is smaller than 1, the opposite is true. For each square, the number is color-coded to aid
in visualization, with darker colors corresponding to a better fit of the specialized model.
If you take off your glasses, there is a convincing 2 <2 block diagonal structure, reflective
of the fact that priors from one cover story generalize better to cover stories in the same
domain.
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5.2.7 Higher order substructures reveal differences between domains

In Figure we study how the order of the fitted prior affects generalization within and
between domains. Recall from Chapter [3]that the order of the fit corresponds to its structural
complexity, eg, first order constrains only the edge density, while sixth order constrains
all subgraphs (ie, substructures) with 6 edges, thus corresponding to a full multinomial fit
for graphs with four nodes. We find that lower fits do not differentiate between domains,
whereas higher order do. This is reasonable, as one would expect more specific models to

be able to better distinguish different domains.
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Figure 5.7: Higher-order substructures reveal differences between domains. Each 4 x4
square is generated the same way as in Figure [5.6] The order of the fit increases from
1 (lowest complexity) on the left to 6 (higher complexity) on the right, and number of
nodes varies vertically. Again, this image is best viewed sans spectacles. The specific
numbers are not as important as the overall trend from left to right: for lower-order fits,
specialization between domains is not particularly apparent; whereas higher orders offer
sufficient resolution to distill the 2 x2 block structure. This is in agreement with our previous
results, where we find that lower-order substructures cannot differentiate between the cover
stories (first-order statistics in Figure [5.1] and second-order in Figure [5.4). However, at
third order, we find a difference between the social and navigation domains (Figure [5.5)).
Moreover, in model selection (see Section[5.5.1)), higher-order fits (5 and 6) perform better
than lower-order fits (for all cover stories up to 7 nodes), indicating that the priors are
sensitive to higher-order substructures that differentiate between domains.
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5.3 Discussion

In this work, we characterized human priors over the graphical structure of several social
and navigation tasks, using a novel method to model distributions over graphs. We find that
the priors have non-trivial graphical structure, requiring higher-order correlations between
connections to describe. The sensitivity of the prior to lower-order substructures, such as
edge density and correlations between pairs of edges, is quite similar between all cover
stories. On the other hand, the sensitivity of the prior to higher-order substructures, such as
triangles, appears to be more domain specific. In view of the hippocampus’ well-understood
role in encoding the structure of navigation tasks and its (albeit less well-understood) role in
encoding structure in other tasks [214], further studies into how priors vary across domains
could prove insightful in understanding the encoding of information in this region.

One particularly striking result requires no mention of the graphical structure, concerning
only priors over the distribution of the edge density. For graphs smaller than ~7-8 nodes
(21-28 edges), the distribution in edge density is generally peaked, with a preference for
sparsity that increases with number of nodes. The sparsity is to be somewhat expected,
as many real networks are indeed sparse. However, representations of nearly-complete
dense graphs can be sparsely represented via the graph complement. Indeed, the appearance
(at ~10 nodes) of a second peak at large edge density when the sparse peak becomes
well-separated from its complement is suggestive. An intriguing possibility is that such a
change might be indicative of an underlying difference in how our brain processes relational
information.

One aspect of these experiments that warrants mentioning is the duality between the
two navigation cover stories. In particular, both were suggestively planar, however, the
connectivity was of two different forms. The trails are rather analogous to 1-vectors, while

the boundaries between neighborhoods are analogous to 1-forms; while a “large” trail
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implies a large separation between the two sites, a “large” boundary between neighborhoods
implies the opposite. While one might expect that this dual representation would result in
different priors, it is remarkable that these navigation cover stories led to priors that are at

least as similar as those between the two social cover stories.

5.4 Experimental procedure

5.4.1 Experimental design

We (the author and Talmo Pereira) have developed an online experimental platform
that smoothly allocates participants to the appropriate experimental chains in real time
and gamified the experiment (see here for a demonstration video). The structure of the
experiments was the same for all four cover stories.

The experiment begins with an introduction about the particular cover story and
poses several questions to the participant to ensure their understanding. After a video
demonstration of the interactive platform, each trial proceeds as follows: the shown relations
appear on the top of the screen, the participant is presented with an interface where they can
move the nodes and add edges. Once they submit their response, a question appears about
which node they thought was the most important (asked in many different ways, to foster
engagement).

To incentivize participants to give their true prior, they are told that there is an underlying
truth, and that they are rewarded by correctly guessing the relations obscured. They were
also told that the nodes were randomly sampled from a large underlying graph, and at each
trial, they were asked their estimated size of this underlying graph.

Each participant performed 16 trials during the course of the experiment, consisting of 2

graphs for each number of nodes n, and with a varying number of relations shown #gnown,
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https://www.youtube.com/watch?v=aZNeN293MZs&t=1s

There were 6 different options for the precise sequences of trials a given participant was

assigned to:

* (n#mown): (4,2), (4,4), (5,3), (5,7), (6,5), (6,7), (7,6), (7.9), (8,7), (8,12),
(10,8), (10,19), (12,8), (12,28), (15, 20), (15, 40);

® (na#shown): (474)’ (472)’ (577)’ (573)’ (677)’ (675)’ (77 9)’ (77 6)’ (8,12), (877),
(10, 19), (10,8), (12,28), (12,8), (15,40), (15, 20);

o (1, #mown): (4,5), (5,5), (6,7), (7,9), (8,12), (10,19), (12,28), (15,10), (4,3),
(5,1), (6,5), (7,6), (8,7), (10,8), (12, 15), (15, 10);

* (7 #aown): (4:3), (5, 1), (6,5), (7,6), (8,7), (10,8), (12,15), (15,10), (4,5), (5,5),
(6,7), (7,9), (8,12), (10,19), (12,28), (15, 10);

o (N, #mown): (4,3), (5,9), (6,7), (7,9), (8,12), (10,19), (12,15), (15,40), (15, 10),
(12,8), (10,8), (8,7), (7,6), (6,5), (5,5), (4, 1);

o (0, #pown): (4,1), (5,5), (6,5), (7,6), (8,7), (10,8), (12,8), (15,10), (15,40),
(12,15), (10, 19), (8,12), (7,9), (6,7), (5,9), (4,3).

Participants were randomly assigned to one of these sequences.

There were two social cover stories:

1. Class: participants were asked to infer the friendships (relations) between students

(nodes) in classroom.

2. Work: participants were asked to infer the friendships (relations) between coworkers

(nodes) in a workplace.

And two navigation cover stories:
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1. Trail: participants were asked to infer the trails (relations) between nature sites (nodes)

in a nature park.

2. City: participants were asked to infer the borders (relations) between neighborhoods

(nodes) in a city.

5.4.2 Exclusion criteria

As data collected online are often contaminated with participants that are not appropriately
engaged in the experiment, we implemented a systematic method for excluding such data.

In particular, we exclude all trials that met any of the following:
1. the participant took less than 3 seconds per shown relation to submit their answer;

2. the participant moved fewer than [2] — 1 nodes; or

=13

3. if #ops > D and faddn > 1

where #,,s 1S the number of relations obscured, f.qq is the fraction of obscured relations that
the participant chose to be edges in their answer, and n is the number of nodes. Moreover, if
a given participant had fewer than 4 valid trials, we excluded all trials from this participant.
These exclusion heuristics were judiciously chosen after observing the distribution of
participants’ responses.

The total number of participants and trials for each cover story (before the exclusion

criteria were applied) are as follows:

* social (students and friendships) — 443 participants, 5340 trials

* social (coworkers and friendships) — 342 participants, 4317 trials

* navigation (nature sites and trails) — 359 participants, 4163 trials
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* navigation (neighborhoods and borders) — 347 participants, 4013 trials

After the exclusion criteria were applied, the total number of participants and trials for

each cover story are as follows:

social (students and friendships) — 362 participants, 4795 trials

social (coworkers and friendships) — 269 participants, 3675 trials
* navigation (nature sites and trails) — 299 participants, 3823 trials

* navigation (neighborhoods and borders) — 289 participants, 3569 trials

5.4.3 Scalability

To handle the combinatorial explosion inherent with an increasing number of nodes, we
employed a method of subsampling graphs from ER,, 1, with appropriate weights. This
allowed us to fit distributions over graphs with 8 nodes (eg, in some cases, we obscured 21
relations, resulting in 22! possible ways to complete the graph, necessitating such a method).

We remark that there were some difficulties in fitting distributions over graphs with 10 or
more nodes (as opposed to the results presented over edges). Despite our best efforts in the
fitting process, the distributions seemed to become concentrated on the complete graph. We
are working on ways to make this fitting procedure more robust. However, we did manage to
obtain reasonable priors in certain cases: see the video here for an animation of a simulation
of a Markov Chain with a realistic prior over graphs with 12 nodes (derived from the cover

story of friendships between students).

5.4.4 Anecdotal interlude

During Thanksgiving in 2018, we had the opportunity of observing two ideal participants:

my two cousins-in-law (14 years and 17 years). They took over two and a half hours
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https://www.youtube.com/watch?v=siVnYAl9I1Q

(without a break) to do one of our experiments (as opposed to the average of ~25 minutes
for MTurk participants). They also provided valuable feedback. In particular, for the smaller
graphs, their imagination was highly resonant with the relevant context. However, when
interacting with the larger graphs (>10 nodes), they “just started making pretty designs”.
This might help explain some of the issues associated with fitting models to these data; if
people become exhausted with the task of carefully determining all obscured relations, it is
not unreasonable that they might choose a “simple” solution, the canonical ones being all

connections or no connections (offering an arguably more boring explanation of the results

in Figure[5.3).

5.4.5 Experimental considerations

A variety of pilot experiments provided valuable insights into how to make an engaging and
intuitive experiment. For example, we had originally started without a visual interface for
manipulating the graphs, so the participants had to hold the connections in their head and
respond to a series of yes/no questions. We also added an extra question after each graph to
make it more engaging (see Section[5.4.1). These and other improvements were incorporated
into the final experiments (resulting in several MTurk workers sending personal emails
about how fun the experiments were, and overall positive feedback in the post-experiment
questionnaire).

An inherent limitation is the open-ended nature of our experiment; there is no ground
truth, hence it is impossible to truly know whether participants were engaged in the task. To
mitigate this, we did our best to select the data corresponding to engaged participants using

a variety of measures (see Section [5.4.1]).
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5.5 Modeling

We fit the participants’ collective data by maximizing the log-likelihood of the graphs the
participants’ submitted, given the Bayesian MCMCP model with a prior parametrized by
equation (3.32) in Chapter [3] We used Newton’s method for this optmization (which we
implemented in python).

Specifically, the log-likelihood of the data is given by:

((ERw(@)],) exp (5 i(G))

==kl > ((BRyx(0)],) exp(F- ()

5.1

where ¢ is the index of the trial, G is the completed graph the participant chose (G’ loops
over all possible graphs (2), ﬁ is the vector of parameters to be fitted, /i(G) is the vector of
moments of the graph G, and (ERy,(G))|, is the uniform distribution over the ways that the
“partial graph” at trial ¢ could be completed (ie, (ERl/Q(G))‘ , results from using a fair coin
flip for all the relations that were not specified at trial ).

The gradient (VL) entries are given by:

(5.2)
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The Hessian (VV L) entries are given by:

L
9p:0p;

> () ((ERyu(@))],) exp

z ﬁ(G/)>> (Ggg [ (G/) <(ER1/2(G/))|t> exp (5

ii

@)

(G’GQ (
; ( > ((ERl/z(G/))lt) eXp( A (G/)) )2
G

i
5 (@) ((BRy (1), ) exo (5 (G

G'eN
— — (5.3)
= (@@ o)
The Newton iteration:
. . o o -1
gt = gn - (vvg) VL, (5.4)

is iterated until machine precision.

5.5.1 Model selection

For each number of nodes and each condition, we selected the order of the model by
cross-validation. However, one of the advantages of our parameterization is that fitting the
data with a lower-order model accurately recovers lower-order cumulants, even when the

data are generated by a prior of higher-order (Figure 2.11]in Chapter [2).

5.6 Future directions

An important follow-up question to the work presented in this chapter, which we have
already started to address, is: does our ability to reason about such graphs reflect our priors

about their structure? To address this question, we ask participants to solve computational
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problems on small graphs. In particular, we have implemented and collected data from two

experiments, inspired by canonical problems in the field of network science.

5.6.1 Euler experiment

For the domain of spatial navigation, the experiment is inspired by the “Seven Bridges of
Konigsberg Problem”, whose solution was given by Euler in 1736 [78], and sparked the
foundations of graph theory. Essentially, the goal is to find the shortest path that traverses
every connection (trail) on the map at least once (where the initial and final locations are

arbitrary). The video of our experiment can be found here.

5.6.2 Community detection experiment

For the domain of social interaction, the experiment is inspired by the community detection
problem, which led to the explosive development of spectral graph theory [2]]. Essentially,
we asked participants to separate a friendship network into two groups of given sizes while

breaking as few friendships as possible. The video of our experiment can be found here.

5.6.3 Analysis of these new experiments

These canonical problems have optimal solutions, which are computationally tractable for
the size of the graphs used in these experiments. This provides well-defined measures of
the relative accuracy of the participants’ solutions. Our hypothesis is that people are able
to more easily find optimal solutions for graphs that occur more frequently in their prior.
To avoid obvious confounds, we compare groups of graphs with similar relevant graph

theoretical properties.
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https://youtu.be/ENVIC4HXOfE
https://youtu.be/vKIMaSdl9dk

5.6.4 Comparison with real networks

Another promising future direction is to compare the priors we quantified with the actual
structure of analogous real networks, employing the framework presented in Chapter
For the social domain, there are several datasets available online (such as the ones used in
Chapters 3] and {). However, for the domain of spatial navigation, ideally one would encode

trail maps of nature parks and neighborhood maps of cities into graphs.

5.6.5 Cultural effects

One of the author’s closest friends, Livia Camargo Tavares Souza, does linguistics fieldwork
on two aboriginal tribes in the Amazon rainforest in Brazil: the Yawanawa and the Xinane.
Among the many fascinating cultural differences, their complex kinship is particularly
interesting (and potentially relevant for priors over the social domain): while parallel cousins
are forbidden from marriage, marriage between cross cousins is considered ideal. Moreover,
the Xinane do not have a written language, and, until a few years ago, had not been contacted.
The authorization to conduct such an experiment is in place, and we are working on a design
that is both cross-cultural and in their native languages (both from the Pano family). Such

an endeavor could offer insights into the generality of these priors.
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Appendix A

Appendix for Graph Cumulants
(Chapter 3)

A.1 Spectral motivation

In this section, we describe a spectral motivation for graph moments and their generalizations.
We again begin with the simplest case, ie, simple graphs, then we generalize this spectral

framework.

A.1.1 Simple graphs

Consider the problem of parameterizing a distribution over simple graphs with n nodes.
We will represent such networks by ordered binary vectors of length (g) , where each entry
represents an unordered pair of nodes, with 1 indicating that these two nodes are connected
by an edge and 0 that they are not. Let X" be the space of all such vectors. In general, the
same graph can be represented by multiple vectors, and distributions over these graphs must

give the same probability to all vectors that represent the same graph.
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When parametrizing a distribution, it is often desirable that the distribution be “smooth”,
in the sense that similar graphs are assigned relatively similar probabilities. As our notion of
similarity, we consider the “graph edit distance” [87/]], defined as the minimum number of
edge changes (ie, additions or deletions) needed to transform one graph into the other. For
example, the wedge (ie, 2-star) is distance 1 from the single edge and from the triangle, and
distance 2 from the empty graph. Despite the fact that they have the same number of edges,
the 3-star is distance 2 from the triangle, as one edge needs to be removed and another edge
added (in a different position).

One common method for parameterizing smooth functions is via a Fourier representation.
For example, a low-pass filter is equivalent to giving preference to the low frequency (ie,
long wavelength) terms, where the location of the cutoff determines the smoothness of the
output. This motivated us to consider an appropriate Laplacian that gives a similarly smooth
parameterization over the space of networks.

To this end, we define a (weighted, directed) “edit graph” H,, where its nodes represent
distinct (ie, non-isomorphic) networks on n nodes. A directed edge from one node to
another appears whenever the network it represents can be transformed into the other by
adding or removing an edge at a single location. The weight of the edge is given by the
number of locations that could be altered to effect this transformation (see Figure [A.T]
for the case of networks with 4 nodes). The Laplacian of this edit graph is defined as:
Ly = D, — A}, where D, is the diagonal matrix of out-degrees, and A, = {a;} is the
(asymmetric) adjacency matrix with entries a;; equal to the weight of the transition from ¢ to
J.

The lowest eigenvalue of L, is 0, and is associated with a left eigenvector that assigns
the same value to each distinct network and a right eigenvector that is uniform over all
representations of the networks (ie, over all binary vectors of length (g) ), thus corresponding

to the ER,, 15, distribution. The remainder of the spectrum contains additional structure.
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Its support is the set of positive integers up to and including (;), and each integer has a
predictable degeneracy: the multiplicity of an eigenvalue A\ = r is equal to the number
of distinct subgraphs with exactly r edges. This is not just a combinatorial coincidence;
the span of left eigenvectors with eigenvalue up to and including 7 is precisely the span
of subgraph counts up to order r. For example, a particular linear combination of the
eigenvectors with eigenvalue A < 2 gives a vector that is precisely the counts of wedges in
the different networks, another combination gives the counts of pairs of edges that do not
share an edge, and another gives the counts of edges.

The structure of this spectrum gives rise to a hierarchical parameterization of distributions

over networks that is equivalent to our proposed family of hierarchical ERGMs, namely

p(G) ox Ud,o(G) exXp ZZBi,jvl,i,j(G) ) (A.1)

i=1 j=1

where v, , is the right eigenvector of L with eigenvalue O (ie, the ER,, 1, base distribution);
v, ; s the set of left eigenvectors of L with eigenvalue 7, and v, ; is one such vector; 7; is

the number of eigenvectors with eigenvalue 7; and ﬁi, ; are the coefficients to be fitted.
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Figure A.1: Spectral motivation for graph moments. a) Directed weighted “edit graph”
H, associated with networks with 4 nodes. The large nodes represent each of the 11 distinct
(non-isormophic) networks. A directed edge from node u to node w indicates that network
u can be transformed into network w by adding/removing an edge at a single location, where
the edge weight is equal to the number of locations that could effect this transformation.
Note that every node has an out-degree of 6, corresponding to the (3) possible edge locations.
b) Schematic of the spectrum of the Laplacian of . The eigenvalues are integers ranging
from O to (‘21), and are degenerate with multiplicity equal to the number of distinct subgraphs
(on at most 4 nodes) with that number of edges. This correspondence has a combinatorial
interpretation: the span of left eigenvectors with eigenvalue A < r is precisely the span of
subgraph counts up to order r.

A.1.2 Generalizations

We now generalize the concept of moments and cumulants for distributions over a set
X = A’ ie, the vectors of length ¢ € N over the alphabet A = {ay, as, ...}, invariant with
respect to a group G acting on this set X'. The action of G induces an equivalence relation
on X: z ~y< Jg € G|z = g oy, partitioning it into orbits. The distribution over X’ is
then characterized by assigning a measure to each of these orbits. For example, for the

case of simple graphs, the group G is 5,,, acting by permuting the n nodes of a graph. The
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set X consists of ordered binary vectors of length ¢ = (g) , where each entry represents an
unordered pair of nodes, with 1 indicating that these two nodes are connected by an edge
and 0 that they are not. Distinct (ie, nonisomorphic) graphs are in different orbits, and all
the elements in a given orbit correspond to the same graph, with the probability associated
to that orbit distributed uniformly over all of its elements.

With this framework, we can construct the weighted directed “edit graph” described in
the previous section for an arbitrary set X and a group G acting upon it. We can then use
the spectrum of the Laplacian of the resulting edit graph to obtain the number of moments
at each order. Again, the nodes of the edit graph are the orbits of X', and a directed edge
from one orbit to another appears whenever an element in the former can be transformed
into one in the latter by changing just one of its entries. The weight of the edge is given by
the number of distinct entries that could be altered to effect this transformation.

This abstraction allows one to apply this formalism to a variety of situations, and
naturally encompasses the generalizations previously presented in this paper. For example,
for unweighted directed networks with no self-loops, X is the set of all ordered binary
vectors of length ¢ = 2(2), where each entry represents an ordered pair of nodes, with 1
indicating that there is an edge from the first node to the second and 0O that there is not.
The group G is again S,,. As another example, consider the case of undirected unweighted
bipartite networks, ie, every node has one of two possible “flavors” (“‘charm” and “strange”),
and edges can occur only between nodes of different flavors. The set X consists of all ordered

binary vectors of length ¢ = nn., where each entry represents a different unordered pair

str?
of nodes with different flavors, and 1 indicates that these two nodes are connected by an
edge and 0 that they are not. The group G allows for permutations of nodes with the same
flavor, namely S"ch X Sy, -

We now illustrate the versatility of this formalism by describing an additional

generalization, namely, k-uniform hypergraphs, ie, a network with hyperedges that connect
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k nodes. As in the graph case, the group G is the symmetric group .S,, acting by permuting
the n nodes. The set X’ consists of all ordered binary vectors of length ¢ = (}), where each
entry represents an unordered set of k£ nodes, and a 1 indicates the presence of a hyperedge
between them and 0 its absence. The orbits of this group action again partition the elements
of X into the isomorphism classes of the hypergraphs they represent. The eigenvalues
of the corresponding edit graph follow a similar pattern: associated to the eigenvalue of
0 is a right eigenvector that is uniform over distinct hypergraphs, and a left eigenvector
that is uniform over all elements of X'. Likewise, for the remaining left eigenvectors,
there is one eigenvector with associated eigenvalue of 1 that is linear in the number of
hyperedges. At second order (associated eigenvalue 2), there are now k eigenvalues (for
n > 2k), corresponding to the k& ways that two hyperedges can relate (sharing any number

from O to k£ — 1 nodes).

A.2 Variance of unbiased graph cumulants

One can use a procedure similar to that for obtaining the unbiased graph cumulants (see
Chapter [3] Section [3.10.5), now applied to the square of the unbiased cumulants. This
results in a recursion relation for the variance of the unbiased cumulant. We illustrate this
by outlining the derivation of the variance of the first-order unbiased cumulant &,,, where
Ry = M-

In general, the expressions for Var(%, g) require moments up to order 2r, a property
analogous to that for real-valued random variables [83, [131]. Thus, for first order, we

consider expressions of the form

Var(p,,) = A(n)pgn + B(n),u%/ + C(n) py,- (A.2)
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and again determine how the functions A(n), B(n), and C'(n) should change when removing
a single random node. This provides a recursion relation, and determines these functions up
to a few constants, which are now chosen to give zero variance as n — o0.

Assume that we started with an initial graph on N > n nodes, and have subsampled it
down to n nodes, thereby accruing a variance Var(/i,,) in the first moment. We consider the
additional variance obtained by randomly removing another node . The change in the first

moment when removing a node ¢ is:

1
[y, =y, = W ((Z) My, — di>
2

2 2

= T T Ty =) (A-3)

Thus, Var(u},) = Var(u,,) + AVar, where

T

B 4

= m<ul/>neN - (

«~N

n— 1)(77, . 2)2 </Ll/di>neN

4 2
+ (Tl . 1)2<n . 2)2 <dz >n<—N7 (A4)

where the angle brackets (-),, , denote the expectation over graphs with n nodes obtained

by randomly subsampling from the original N nodes.

Starting with the last term, recall from Chapter |3| Section [3.10.5| that (d,) = 2—;/ and

2 . . . .
(d?) = % + (d;), where angle brackets without a subscript denotes expectation with respect
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to a single graph. Thus, we have

2c 2c
(= (21 22)
< n n n«—N

= (n—1)(n = 2){tan) nen + (0 = D){ty,) e nv

= (n—1)(n = 2)figr + (n — 1)f1y,, (A.S5)

where /i, denote the moments of the graph with N nodes as NV — oo, as moments are
preserved in expectation under subsampling of nodes.

For the middle term, as the nodes are removed randomly,

2(0)
<N1/dz‘>n<—N = <M1/ (271 1/>
n«—N

= (n— 1) (i Y nen- (A.6)

and thus partially cancels with the first term, giving —ﬁ (13) e N~

Computing this first term requires the inclusion of the current amount of variance:

(3 ) men = (1) + Var(py,)

= [i3, + Var(u,,). (A7)
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Substituting these into the expression for Var(y,) yields a recursion relation:

V(i) = Var(ny) = s v+ =g s

= Var(py,) — ﬁ (43, + Var(uy,))

4 . .
i (n—1)2(n — 2)? (n = 1)(n = 2jin + (= D))

= Var(u,,) — ﬁ (ﬂ%/ + Var(ul,))

+ 1 o n =+ 4 7
=D —2)""" a=1)(n - 22"
4 4 A2
= (1 — (71_—2)2) Var(p,,) — (71——2)2M1/
4 ) 4 X
Fom =" monm -2 (A®)

The solution to this recursion relation (along with the condition that Var(u,,) — 0 as

n — 00) gives

Var(f,,) = ([h/ + (3 — 2n)lﬁ/ +2(n — 2>ﬂ2A>

~— ~—

(Ml/(l — y,) +2(n — 2)/%2/\>- (A9)

A.3 Formulas for graph moments and graph cumulants

Here, we present expressions for computing some relevant graph moments of a network
G (with n nodes) using only the counts ¢, of the connected subgraphs g in G, and their
conversion to graph cumulants in the n — oo limit. While we do not display all expressions
here, we have automated their derivation to arbitrary order, and the results up to sixth order

are included explicitly in the code associated with this paper.
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A.3.1 Simple graphs

For the simplest type of network (ie, undirected, unweighted, with no self-loops or multiple
edges), we enumerate here the expressions for all third-order graph cumulants, as well
as those that are necessary for computing the (sixth-order) cumulant associated with the

complete graph in four nodes.

These graph moments are given by:

= 2 (A.10)
)
- (A.11)
Hon = 3(3) .
Cy 62/) — A
oy = = : (A.12)
o 80
Ca
o G)
= % (A.14)
M3y = 4(2) .
Cn
gy = L (A.15)
12(3)
Cn cale, —2) — 3¢y — 3¢, — 2cn
= = Al
= 50() ) e
_Cy (C?,/)_CA_Q_CW_C/A
My = 15(2) = 15(2) (A.17)
Y
Ky = 12(2) (A18)
o
= A.l
Hyo 3(2) (A.19)
%
_ A2
Hsz 6(2) (A.20)
Hom = 2 (A21)
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The corresponding graph cumulants (in the n — oo limit) are given by:

Ky = K/ (A.22)
Fion = Han = i, (A23)
Koy = oy = i, (A24)
Fgn = Hsn = 3fiantys + 2013 (A.25)
Rign = Hss = 3fiantyy + 2013 (A.26)
Fism = Hgn — 2flanltas — Haglty, + 2413, (A.27)
Ry = g = flanby — 2Hayfl, + 2413, (A.28)
Ray = Hay — Shayht, + 2413 (A.29)

Ry = Papy — Hapbbyy = Maably = 2ftamity

- 2M§A — Honkoy t 10:“’2/\:“%/ + 2#2//,“%/ - 6#11/ (A.30)
Kyg = fag — 4gntty, — 2435 — Jay + Spiontts, + Ao, 3, — Bpy, (A.31)
Ksg = fag — lapftny — Haphly — 2Hspkon — 2y flon — 4ftsntion — 2ftamilyy

+ Apign iy + s i, + Spgepd, + Ao,

+ QON%ANU + 8oty + 2#3//#1/

— A8iop i}, — 12419, p11, + 24115, (A.32)
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Ken = Mg — Okt — 12040 ton — 3ttaghloy + 2414pi05, + 6piucpt?,
— Apgapigy — 6M§m
+ 24 p3ppon by, + 2443, plopfty, + A8z lonfty) t 24 3 oty
— 24pu5p 15, — 24 g, 113, — 2450405,
3 2 3
+ 12055 + 15p5 g, + sy,
- 153#3/\#%/ - 90#2/\#2//,“%/ - 27#%//#%/

+ 288511, + T2419, 417, — 12045, (A.33)

A.3.2 Directed graphs

We now enumerate the expressions necessary for computing the graph cumulants of all
directed subgraphs on three nodes, including the sixth-order graph cumulant associated with
the complete directed triad.

These directed graph moments are given by:
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oy = (A34)

2()
Hom = 30(2—?) (A.35)
Hop = 30<2_§) (A.36)
fion = ;(2—3") (A37)
figp = % (A.38)
o = 6‘3@) (A.39)
Hgp, = 66(3—,?) (A.40)
fgo = ;(3—”") (A.41)
Jign = ;(3—?) (A.42)
Jag = 36(43) (A.43)
fao = ;E*—S (A44)
i = (5(4—3 (A45)
fin = 30(‘;) (A.46)
Jisg = 6C<5—?) (A47)
los = % (A.48)

The corresponding directed graph cumulants (in the n — oo limit) are given by:

147



Ky = M1y
_ 2
Kom = fhop — [y
_ 2
Kon = Mop — My
_ 2
Kon = Mon — My
_ 2
KRog = Hop — M1y
Fam = Ham — Hanblis — Hoabbs — flaghys + 2005,
Fap = Han — Hopllis — Honthys — flogltys + 2017,
Kap = H3a — Hoaklis = Hopkliy — Hoaflys + 2#?/
Kap = Haa — SHoablys + 2#%
_ 2 2
Kas = Has — 2Hspblys — 2Hgaklys — Hon — Hon — Hoablog
+ 2igniys + dioafiss + igaTs + 2figeit, — Oy,
Ky = Mg — 2Hgptas — 2fapflys — Mgr\ - N%f\ — Mooy

 ApionptTs 4 2ot + Aponftls + 2Hosit, — 6Lt

(A.49)
(A.50)
(A.51)
(A.52)
(A.53)
(A.54)
(A.55)
(A.56)

(A.57)

(A.58)

(A.59)

Kag = Hya — Haptls — Haspkbiy — Haalbis = Haallis — Hoafbon — Hopafoa — Hoallog

+ 2pon il + 2tonttss + Oigaids + 2p0013, — Gpil,
Rapm = Mg — 2M3all1s — 2l3pfl1s — Hoaflon — M%x\ - Nga

+ 0o 3y + 2oty + Aptonftls + Apiogit, — 6111,
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55@ =

Keg =

Psg = Haghiy — Haghas = 2baghyy — Haaby—

T Haaton — HaaHon — HaaMog — Hapton — Hapkion

= Haalag — Hapbom — Haakon — Haakan — H3pkaa

+ Bptgahtis + Bpsabts + Isahtis + 2psahti;

+ QU%A + 2“%/\ + 6U§f\ + 2:“%4 + 2fi9n k0

+ Apigntion + dlontton + 2fiontlos T 2igatlos - Ahionfiog

— 120ion 7y — 120agp iy — 244000135 — 12f10gp13, + 24415, (A.62)
Lee — Olisgiliy — Shtaglion — Staghon — Oftaghon — Sltaablos

+ Gpaghis + Opaghis + 120405 + Optaaity — i — St — St — Hia

+ 12pspptontins & 120appionftns + 1200sp gty + 120050 pionftr, + 120050 fion by
+ 12130 foghty s + 120030 pontirs + 120 oy s+ 12003n Honftrs + 1215a lontte
— 36pt5 3 — 36113a03s — BOtsa sty — 12055111,

+ 2M§A + Bpiontionttos + 6#2/\#3;‘\ + 2#%/\ + 6#2/\#3/\ + 6,“%;*\/124 + 2#%&

— 184111y — 18Lignfianitls — 361anbanttly — 18Haontigphtls — 18p5aH11,

— 364 tonttss — 18ionfiogtts; — D4pioALLT, — 36fiontioslts, — 18 iapt},

+ 60p9n 11, + 60pap 111, + 120011 + 60pgppty, — 120415, (A.63)
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Appendix B

Appendix for Spectral Graph Reduction
(Chapter 4)

B.1 Perturbations to eigenvalues
of the Laplacian pseudoinverse

We first provide the lowest order change in the eigenvalues of L;. Then, we show how it
relates to the Frobenius norm of the perturbation, explicitly relating it to our graph reduction
algorithm.

Consider an inverse Laplacian L', which has an eigenvector Z (without loss of generality,
assume ||]|, = 1) with associated eigenvalue \. If we perturb L' by e AL', we can solve

for the first-order corrections to this “eigenpair” as follows:

(L' + e ALY (T + eAT) = (X + eA\) (T + eAT)

(L' — N)AT = (A — ALY + O(e),
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where we have used L'7 = \7.

Taking the inner product with # gives

where we have used the symmetry of L'

This provides the first-order correction to the eigenvalues of L' + cAL':
M = 2'ALZ. (B.1)
The correction in (B.1)) is controlled by the operator norm of AL,

M= FArF< s |an'F], = ||AL,

I2ll,=1

Thus, bounding the first-order correction to the eigenvalues,
AN < [jAaLl] . (B.2)

As the operator norm is bounded by the Frobenius norm (by the Cauchy—Schwarz
inequality), the estimated error (ie, > E [H AL' Hi] , equation (4.1])) provides a conservative
bound for the change in the eigenvalues of the resulting reduced graph.

Moreover, as the bound is the same for all eigenvalues of the perturbed L', the relative
error is more tightly bounded for its largest eigenvalues (those associated with large-scale

structure).
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B.2 Applications to graph visualization

Data visualization is an important (and aesthetically pleasing) application of graph reduction.
As such, we generated videos of our algorithm reducing several real-world datasets.
Figure [B.1|displays several stages of our algorithm applied to a temporal social network. A
video of this reduction can be found here; an application to an airport network (a case with
both geometric and scale-free aspects) can be found here; an application to the European
road network can be found here, and a reduction of a “hierarchical meta-graph” can be

found herell]

"Explicit urls for the non-hyperlinked:
voutube.com/watch?v=ggqLJclVUMLS8; yvoutube.com/watch?v=tXUr6RBRaET}
youtube.com/watch?v=UVhT0y4Uae0; and youtube.com/watch?v=13ud4kkxMK40L.
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https://www.youtube.com/watch?v=qqLJclVUML8
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https://www.youtube.com/watch?v=UVhT0y4Uae0
https://www.youtube.com/watch?v=i3u4kkxMK40
youtube.com/watch?v=qqLJclVUML8
youtube.com/watch?v=tXUr6RBRaEI
youtube.com/watch?v=UVhT0y4Uae0
youtube.com/watch?v=i3u4kkxMK40

T |E| =25

Figure B.1: Visualization of our graph reduction algorithm preserving global structure.
We applied our algorithm (prioritizing edge reduction, and allowing for deletion, contraction,
and reweighting) to a weighted social network of face-to-face interactions during an
exhibition on infectious diseases, with initial edge weights proportional to the number
of interactions between pairs of people (410 nodes and 2765 edges) from [116]. Node
color indicates the lowest nontrivial eigenvector of the reduced Laplacian, which in this
case is aligned with the temporal direction. This graph displays a notable amount of
hierarchical clustering (owing to its social nature), which is reflected in the reduced graphs.
Eg, our algorithm begins by collapsing small, tightly-knit clusters of several people into one
“supernode”, corresponding to groups of people who visited the exhibition together. A video
of this reduction can be found here.
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